2025/01/29 Ver.1.0

AUTOMOTIVE, Analog-Front-End IC for resistive bridge sensor

MV3830ARREG2 Datasheet

DESCRIPTION

MV3830 is an Analog Front-End IC which changes an analog signal output from a sensor to a digital signal, processes the digital signal, and outputs it to a host such as a microcomputer in the subsequent stage through digital communication. This is compatible with a wide variety of sensors.

FEATURES

- \cdot Analog power supply: 2.2V to 5.5V
- · Voltage regulator for external sensor (1.8V)
- · Offset cancel circuit for external sensor
- Low noise Programmable Gain Amplifier (1 to 128)
- External sensor power off switch
- · 24bits \angle SADC with a wide dynamic range is mounted
- · Internal temperature sensor
- Time-dependent change correction function
- Offset TC and gain TC correction
- $\cdot\,$ Non-volatile memory for corrective coefficient of sensor
- · I/F:I2C Fast Mode (400kbps) + CRC(optional)
- · Change AD conversion rate
- · Configurable IRQ output with threshold value
- · AEC-Q100 Grade2 Temperature range: -40deg.C to +105deg.C
- Self-check function
 Sensor open/short detector
 Power supply low voltage detector
 Current limit for VRG terminal
 NVM CRC

INDEX

DESCRIPTION	1
FEATURES	
BLOCK DIAGRAM	4
PIN CONFIGURATION	5
	6
Existing of the pinc	6
Faultivalent circuit of the pins	0
	10
	10
Operating temperature range, newer supply voltage	10 10
Input of sensor	10
	11
Current consumption	14 14
Digital I/O	15
Internal Regulator	
Offset cancel circuit for external sensor	
PGA Programmable Gain Amplifier	
Temperature sensor	
TYPICAL APPLICATION CIRCUIT	
Input channel and target sensor	
Strain gauge	
TYPICAL PERFORMANCE CHARACTERISTICS	
Integral non-linearity	
Input referred voltage noise	20
AD conversion time (Typical value)	22
AC characteristics	24
Filter characteristics	
Internal regulator DC characteristics	2/
Current consumption at Standby	
Temperature sensor	
	20
Overview	
Normal Mode	30
Sequential Mode	
Correction operation	
Retrieve temperature and physical value	35
VRG external input mode	
Time-dependent change correction function	
Sensor open/short detector	
SERIAL INTERFACE	
Communication speed	
I2C command format	
CRC addition function for error detection of I2C	
STATE	
State definition	
State transition	
KEGISTEK	

Register address map	
Details of register address map	52
NVM (Non-volatile memory)	
NVM Address map	
Method to calculate CRC check sum value	82
DIMENSIONS	
MARKING CONTENTS	
How to identify 5 characteristic lot numbers.	
, NOTES	
ATTENTION	

BLOCK DIAGRAM

PIN CONFIGURATION

Fig. 5.1 Pin configuration (Top view)

TERMINAL EXPLANATIONS

Function of the pins

Table. 6.1 Pin table

1	VREFP	Ι	Reference voltage plus
2	VRG	I/O	EXRG = "Low": Internal regulator output EXRG = "High": Power supply, Drive voltage for external sensor Need external 0.1uF capacitor
3	VDD50	-	Power supply for 5V Need external 1.0uF capacitor
4	RSTB	Ι	Negative logic reset(Built in pull-up)
5	TMODE0	Ι	Setting for TEST mode(Built in pull-down)
6	TMODE1	Ι	Setting for TEST mode(Built in pull-down)
7	EXRG	Ι	Setting for VRG input mode(Built in pull-down) (``Low" : Internal regulate, ``High" : External VRG input)
8	SCL	I/O	Serial clock for I2C
9	NC	-	No connection
10	NC	-	No connection
11	SDA	I/O	Serial data for I2C
12	TOUT	0	Output port for analog test Output signal for VDD50 voltage detect (default setting)
13	GPO	0	General purpose output port (Built in 80k ohm pull-down)
14	AOP	Ι	External temperature sensor input signal plus: Channel 0
15	COM0	0	Pin for controlling external temperature sensor ground: Channel 0
16	AOM	Ι	External temperature sensor input signal minus: Channel 0
17	GND	-	Ground
18	A1P	Ι	External sensor input signal plus: Channel 1
19	COM1	0	Pin for controlling external sensor ground: Channel 1
20	A1M	Ι	External sensor input signal minus: Channel 1
21	VREFN	Ι	Reference voltage minus Connect with GND
22	A2P	Ι	External sensor input signal plus: Channel 2
23	COM2	0	Pin for controlling external sensor ground: Channel 2
24	A2M	Ι	External sensor input signal minus: Channel 2

Equivalent circuit of the pins

Table 6.3 Equivalent circuit of the pins (2/3)

Table 6.4 Equivalent circuit of the pins (3/3)

©2025 Mitsumi Electric Co., Ltd. All rights reserved. The contents of this document are subject to change without notice. The details listed here are not a guarantee.

MITSUMI ELECTRIC CO., LTD. Semiconductor Business div. https://product.minebeamitsumi.com/en/product/category/ics/

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit
Storage temperature range	T _{STG}	-40	125	deg.C
Power supply voltage	VDD50max	-0.3	6.0	V
Input voltage for VRG	VRGMAX	-0.3	VDD50+0.3 (max 2.0)	V
Digital terminal voltage	VDIGMAX	-0.3	VDD50+0.3 (max 6.0)	V
Analog terminal voltage	VANAMAX	-0.3	VRG+0.3 (max 2.0)	V

RECOMMENDED OPERATING CONDITIONS

Operating temperature range, power supply voltage

Item	Symbol	Min.	Max.	Unit
Operating temperature range	T _{OPR}	-40	105	deg.C
Power supply voltage	VDD50 _{OPR}	2.2	5.5	V
External input voltage for VRG	VRGOPR	1.75	1.85	V
External input voltage for VREFP	VREFPOPR	1.75	1.85	V
Internal regulator output current	IVRGo	0	16	mA

· Sequence of Power-ON (Internal regulate mode)

· Sequence of Power-ON (VRG external input mode)

note¹: In the figure, input Low to RSTB pin until power is turned on then input High to RSTB pin, but RSTB pin can be turned on with the open (RSTB pin is High following the power supply by internal pull-up).

· Sequence of Power-OFF, Reboot (Internal regulate mode)

· Sequence of Power-OFF, Reboot (VRG external input mode)

The values of waiting time T_0 , T_1 , T_2 at power-on are as follows. Of these, T_2 varies depending on the NVM value.

Symbol	NVM_A (SET_OI	.Bh bit6 DET) = 0	NVM_ABh bit6 (SET_ODET) = 1			
	NVM_ABh bit5 (SEL_CYC) = 0	NVM_ABh bit5 (SEL_CYC) = 1	NVM_ABh bit5 $(SEL_CYC) = 0$	NVM_ABh bit5 $(SEL_CYC) = 1$		
T ₀		Min. 100us				
T_1	Min. 10ms					
T ₂	Min. 2ms		Min. 4ms	Min. 28.5ms		

note²: Start at the point when at least one of VDD50 and VRG becomes 0.1 V.

(Voltage relationship between VDD50 and VRG should conform to absolute maximum ratings, recommended operating condition, note³)

note³: Shut off VDD50 after shutting off VRG at VRG external input mode.

Input of sensor

Channel 0/1/2 without PGA

(unless otherwise specified, VREFP=VRG)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Differential input full scale range	VID _{FSR}		-VREFP	-	VREFP	V

Channel 1/2 with PGA

(unless otherwise specified, VREFP=VRG)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Common mode voltage	V _{CM}	Include variation and temperature variation	450	500	550	mV/V
Offset voltage	V _{OF}	Include variation and temperature variation	-40	-	40	mV/V
Offset voltage temperature coefficient	Voftc		-0.01	-	0.01	mV/V/deg.C
Differential input full scale range	VID _{PGA}		Refer to PGA			mV/V

ELECTRICAL CHARACTERISTICS

Current consumption

VDD50 current consumption

(unless otherwise specified, EXRG=Low (Internal regulate), Ta=-40~105deg.C, VREFP=VRG)

Item	Symbol	Condition (note ⁴)	Min.	Тур.	Max.	Unit
Current consumption	Iddsl	at Sleep Ta=25deg.C		1.0	3.0	
at Sleep	I_{DDSL1}	at Sleep	-	1.0	140	
Current consumption at Standby	Iddsb	at Standby Ta=25deg.C		1.2	3.2	UA
	I_{DDSB1}	at Standby	-	1.2	140	
VDD50 current consumption at Active	I _{ddadit}	AD conversion of internal temperature sensor	-	0.95	1.4	
	I _{DDADEX1}	AD conversion of external sensor without amplifier (note ⁵)	-	0.87	1.3	
	Iddadex2	AD conversion of external sensor at Gain=4 to 16 (note ⁵)	-	4.9	5.7	mA
	Iddadex3	AD conversion of external sensor at Gain=32 to 128 (note ⁵)	-	5.8	6.6	

note⁴: Typ value is measured value VDD50=3.3V.

note⁵: It is not included external sensor drive current in current consumption.

VRG current consumption

(unless otherwise specified, EXRG=High(External VRG input), Ta=-40~105deg.C, VREFP=VRG)

Item	Symbol	Condition (note ⁶)	Min.	Тур.	Max.	Unit
VRG current consumption at Active (note ⁸)	I _{RGADIT}	conversion of internal temperature sensor	-	0.72	0.99	
	Irgadex1	AD conversion of external sensor without amplifier (note ⁷)	-	0.65	0.92	
	Irgadex2	AD conversion of external sensor at Gain=4 to 16 (note ⁷)	-	4.7	5.3	mA
	Irgadex3	AD conversion of external sensor at Gain=32 to 128 (note ⁷)	-	5.5	6.3	

note⁶: Typ value is measured value VDD50=3.3V and Ta=25deg.C.

note⁷: It is not included external sensor drive current in current consumption.

note⁸: This value can also be referred as the VRG current consumption in internal regulation mode.

Digital I/O

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
High level input voltage	VIH	RSTB, TMODE0, TMODE1, EXRG, SCL, SDA	0.7 × VDD50	-	VDD50 + 0.3	V
Low level input voltage	VIL	RSTB, TMODE0, TMODE1, EXRG, SCL, SDA	-0.3	-	0.3 × VDD50	V
Output voltage high-level	V _{OH}	ТОUT, GPO@SEL_GPO[5:0] ≠ 00h Iон = -3mA	0.8 × VDD50	-	-	V
Output voltage low-level	V _{OL1}	SCL, SDA, TOUT, GPO@SEL_GPO[5:0] \neq 00h I _{OL} = 3mA	-	-	0.4	V
	V _{OL2}	$\begin{array}{l} \text{GPO@SEL}_{\text{GPO}[5:0]} = 00h\\ \text{I}_{\text{OL}} = 3uA \end{array}$	-	-	0.4	V

Internal Regulator

(unless otherwise specified, trimmed)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
VRG voltage	V_{RG}	$IVRG_0 \leq 110uA$ at Sleep, Standby	1.71	1.8	1.89	V
VRG voltage	V_{RG}	$IVRG_0 \leq 16mA$ other than Sleep, Standby	1.71	1.8	1.89	V
Output current limit	ILIM	at Active	25	-	60	mA

Offset cancel circuit for external sensor

(unless otherwise specified, VREFP=VRG)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Offset voltage compensation range	V _{OF}	Channel 1, 2	-40	-	40	mV/V
Offset voltage compensation step	Vofst	Channel 1, 2	-	256	-	step

PGA Programmable Gain Amplifier

(unless otherwise specified, VREFP=VRG)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Gain setting	Gv	Setting CHx_GAIN[2:0]	1	-	128	V/V
Gain setting step	G _{ST}		-	8	-	step
Gain error	Gerr		-5	-	5	%

Unit: mV/V

Itom	Symbol	Gain [V/V]								
Item	Symdoi	1	4	8	16	32	64	128		
Differential input full scale range	VID _{PGA}	±450	±121	±59.3	±28.1	±15.6	±6.24	±1.55		

PGA output voltage (ideal value) is shown in the following equation.

 $V_{OUT} = G_{v} * (V_{INP} - V_{INM}) = G_{v} * VID_{PGA}$

 $\label{eq:VINP} \begin{array}{l} *V_{\text{INP}} = \text{PGA input voltage plus} \\ V_{\text{INM}} = \text{PGA input voltage minus} \\ G_{\text{V}} = \text{Gain setting} \\ \text{VID}_{\text{PGA}} = \text{Differential input full scale voltage} \end{array}$

Temperature sensor

%3rd order correction

(unless otherwise specified, VREFP=VRG)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolustion	T _{RES}		-	16	-	bits
Temperature sensitivity	T_{Sens}	Ta = -40 ~ +105deg.C	1.70	-	2.77	mV/ deg.C/VREF

TYPICAL APPLICATION CIRCUIT

Input channel and target sensor

Table 10.1	Input	channel	and	target	sensor

Input channel	Temperature sensor	Physical sensor
Channel 0 (A0P, A0M, COM0)	connect OK	connect NG
Channel 1 (A1P, A1M, COM1)	connect OK	connect OK
Channel 2 (A2P, A2M, COM2)	connect OK	connect OK

Strain gauge

Fig. 10.1 Strain gauge

Caution about external capacitor

- 1) VDD50 and VRG must be connected with specified capacitors so that MV3830 can be stable.
- 2) For VDD50, we recommend to use a capacitor whose nominal value is 1.0uF, capacitance tolerance \pm 20% or less, and temperature characteristics \pm 22% or less.
- 3) For VRG, we recommend to use a capacitor whose nominal value is 1.0uF, capacitance tolerance $\pm 10\%$ or less, and temperature characteristics $\pm 15\%$ or less. If any capacitor is not connected, MV3830 may be broken.
- 4) If a filter is placed between the sensor outputs (A1P/A1M or A2P/A2M), we recommended to use a capacitor of 1.2nF or less. If a capacitor of 1.2nF or more is used, the open fault detection function may not work properly.

TYPICAL PERFORMANCE CHARACTERISTICS

Integral non-linearity

(unless otherwise specified, Ta=25deg.C,VREFP=VRG, note⁹)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
INL	INL	common mode voltage = VREFP/2	-	±150	-	ppm of FSR (note ¹⁰)

note⁹: average number = 1time, IIR_FILT = OFF note¹⁰: FSR = 2VREF/Gain, VREF = VREFP - VREFN

ADC output code (ideal value) is shown in the following equation.

$$D_{OUT} = \frac{V_{INP} - V_{INM}}{V_{LSB}} = (V_{INP} - V_{INM}) * \frac{2^{24}}{4(VREFP - VREFN)}$$

 $V_{INP} = ADC$ input voltage plus $V_{INM} = ADC$ input voltage minus VREFP = VREFP voltage, VREFN = VREFN voltage $V_{LSB} = voltage$ per 1LSB

Input referred voltage noise

RMS value

CH0 (unless otherwise specified, without sensor, Ta=25deg.C, VDD50=3.3V, note¹¹)

Unit: uVrms

OCD	conversion time	conversion time	Symbol				Gain [V/V]			
USK	@Normal Mode	@Sequential Mode	Зушиот	1 note12	4	8	16	32	64	128
256	1.18ms	0.39ms	V _{nrms1}	30.95	8.19	4.48	2.85	2.30	2.14	2.10
512	2.35ms	0.78ms	V _{nrms2}	11.39	3.42	2.14	1.64	1.51	1.48	1.48
1024	4.70ms	1.56ms	V _{nrms3}	7.33	2.27	1.45	1.14	1.07	1.05	1.04
2048	9.38ms	3.13ms	V _{nrms4}	5.15	1.60	1.02	0.80	0.75	0.74	0.74

CH1, CH2	(unless otherwise	specified, without ser	sor, Ta=25deg.C, VDD50=3.3V, note ¹¹)	Unit:uVrms

	AD conversion	AD conversion					Gain [V/V]			
OSR	time @Normal Mode	time @Sequential Mode	Symbol	1 note12	4	8	16	32	64	128
256	1.18ms	0.39ms	Vnrms1	30.95	8.16	4.42	2.76	2.19	2.02	1.98
512	2.35ms	0.78ms	V _{nrms2}	11.39	3.38	2.08	1.56	1.43	1.40	1.39
1024	4.70ms	1.56ms	V _{nrms3}	7.33	2.24	1.41	1.08	1.01	0.99	0.98
2048	9.38ms	3.13ms	Vnrms4	5.15	1.58	0.99	0.76	0.71	0.70	0.70

note¹¹: VREFP=VRG, average number=1time, IIR_FILT=OFF

note¹²: CHx_GAIN[2:0]=000b or 001b

Unit: uV

Unit: uV

Peak-to-Peak value

CH0 (unless otherwise specified, without sensor, Ta=25deg.C, VDD50=3.3V, note¹³)

	AD conversion	AD conversion					Gain [V/V]			
OSR	time @Normal Mode	time @Sequential Mode	Symbol	1 note14	4	8	16	32	64	128
256	1.18ms	0.39ms	V _{npp1}	204.3	54.05	29.57	18.81	15.18	14.12	13.86
512	2.35ms	0.78ms	V _{npp2}	75.17	22.57	14.12	10.82	9.97	9.77	9.77
1024	4.70ms	1.56ms	V _{npp3}	48.38	14.98	9.57	7.52	7.06	6.93	6.86
2048	9.38ms	3.13ms	V _{npp4}	33.99	10.56	6.73	5.28	4.95	4.88	4.88

CH1, CH2 (UNIESS OTHERWISE SPECIFIED, WITHOUT SENSOR, 1a=25deq.C, VDD5U=3.3V, note ²³)	CH1,	, CH2 (unless	otherwise	specified,	without sensor,	Ta=25deq.C,	VDD50=3.3V	, note ¹³)	
--	------	---------	--------	-----------	------------	-----------------	-------------	------------	------------------------	--

AD AD Gain [V/V] conversion conversion OSR time time Symbol 1 @Normal @Sequential 8 64 4 16 32 128 note14 Mode Mode 256 0.39ms 204.3 29.17 18.22 14.45 13.33 13.07 1.18ms Vnpp1 53.86 512 2.35ms 0.78ms Vnpp2 75.17 22.31 13.73 10.30 9.44 9.24 9.17 1024 4.70ms Vnpp3 48.38 14.78 1.56ms 9.31 7.13 6.67 6.53 6.47 2048 9.38ms 3.13ms V_{npp4} 33.99 10.43 6.53 5.02 4.69 4.62 4.62

note¹³: VREFP=VRG, average number=1time, IIR_FILT=OFF note¹⁴: CHx_GAIN[2:0]=000b or 001b

Unit: ms

AD conversion time (Typical value)

Normal Mode

(unless otherwise specified, Ta=25deg.C, VDD50=3.3V, VREFP=VRG)

Item	Symbol	Number of averaging times	OSR				
			256	512	1024	2048	
AD conversion time (Normal Mode)	T _{nmconv1}	1	1.18	2.35	4.70	9.38	
	Tnmconv2	2	1.57	3.14	6.26	12.51	
	T _{nmconv3}	3	1.96	3.92	7.82	15.64	
	Tnmconv4	4	2.35	4.70	9.39	18.76	
	T _{nmconv5}	5	2.75	5.48	10.95	21.89	
	Tnmconv6	6	3.14	6.26	12.51	25.01	
	T _{nmconv7}	7	3.53	7.04	14.07	28.14	
	Tnmconv8	8	3.92	7.82	15.64	31.26	

Unit: ms

Sequential Mode

(unless otherwise specified, Ta=25deg.C, VDD50=3.3V, VREFP=VRG)

Item	Symbol	Number of averaging times	OSR				
Item			256	512	1024	2048	
AD conversion time (Sequential Mode)	T _{smconv1}	1	0.39	0.78	1.56	3.13	
	T _{smconv2}	2	0.78	1.56	3.13	6.25	
	T _{smconv3}	3	1.17	2.34	4.69	9.38	
	Tsmconv4	4	1.56	3.13	6.25	12.50	
	T _{smconv5}	5	1.95	3.91	7.81	15.63	
	T _{smconv6}	6	2.34	4.69	9.38	18.75	
	T _{smconv7}	7	2.73	5.47	10.94	21.88	
	T _{smconv8}	8	3.13	6.25	12.50	25.00	

After operating Sequential Mode command, it takes conversion time same as Normal Mode until taking the first conversion result. After that, it takes conversion time in the table during Sequential Mode.

Fig. 11.1 AD conversion time (Sequential Mode)

AC characteristics

(unless otherwise specified, Ta=25deg.C, VDD50=3.3V, VREFP=VRG)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Shift time to Active	$T_{slp2act}$	Sleep/Standby \rightarrow Active	-	0.42	1.3	ms	
AD conversion interval (Normal Mode)	Tinterval1	TSTBY[2:0]=000b	-	0	-		
	Tinterval2	TSTBY[2:0]=001b	-	10	-		
	Tinterval3	TSTBY[2:0]=010b	-	100	-	ms	
	Tinterval4	TSTBY[2:0]=011b	-	400	-		
	Tinterval5	TSTBY[2:0] =100b, 101b, 110b	-	1000	-		
	Tinterval6	TSTBY[1:0]=111b	One Shot				
DRDY pulse width	T _{drdy}	C _{OL} ≦100pF	-	0.2	-	ms	

Fig. 11.2 AD conversion interval (Normal Mode)

Filter characteristics

(unless otherwise specified, Ta=25deg.C, VDD50=3.3, VREFP=VRG)

Fig. 11.4 Filter characteristics at OSR=512

Internal regulator DC characteristics

(unless otherwise specified, Ta=25deg.C, VDD50=3.3, VREFP=VRG)

Fig. 11.7 DC load current characteristics

Current consumption at Sleep

(unless otherwise specified, VDD50=3.3, VREFP=VRG)

Fig. 11.8 Current consumption at Sleep

Current consumption at Standby

(unless otherwise specified, VDD50=3.3, VREFP=VRG)

Fig. 11.9 Current consumption at Standby

Temperature sensor

(unless otherwise specified, VDD50=3.3, VREFP=VRG)

Fig. 11.10 Temperature error of internal temperature sensor

Temperature error when using the correction coefficient written in NVM at the time of shipment. If adjusted by the user, it follows the accuracy of the adjustment system.

OPERATION DESCRIPTION

Overview

The overview of MV3830 operation is shown below.

The mode to reduce current consumption at Active

1) Sleep Mode: Only to receive command. Unable to access NVM.

The mode for AD conversion

- 1) Normal Mod: After receiving start command, MV3830 continuously or single measures by setting AD conversion time. Target sensor is from one to three.
- 2) Sequential Mode: After receiving start command, MV3830 continuously measures. Target sensor is only one.

The flow from Power-ON to AD conversion is shown below.

Normal Mode

The IC continuously measures for 1 to 3 sensors in this mode. And it can be set the interval of continuous measurement.

Addr. Value Name		Dit	Default	Description		
		DIL	Delault			
OEb	MEAS CTDI	TSTBY[2:0]	00h	Setting for AD conversion interval		
UFII MEAS_CIRL		MODE[2:0]		Operation setting		
0Eh MEAS_EN		EN_1ST[1:0]		Setting for 1st measurement target		
		EN_2ND[1:0]	00h	Setting for 2nd measurement target		
		EN_3RD[1:0]		Setting for 3rd measurement target		

Table 12.1 Register for Normal Mode setting

Fig. 12.2 Normal Mode timing

DRDY (B) is a signal notifying completion of AD conversion data preparation. Execute data acquisition command at DRDY (B) change timing when acquire data in sync with AD conversion. DRDY (B) output timing may change When communication including I2C is performed. DRDY (B) at Normal Mode output timing is delayed When I2C and MV3830 transfer timing conflicts.

Sequential Mode

The IC continuously measures for one sensor in this operating mode.

Addr.		Dit	Dofault	Description		
Value	Name	DIL	Delault	Description		
0Fh	MEAS_CTRL	MODE[2:0]	00h	Operation Setting		
0Eh	MEAS_EN	SET_SEQ[1:0]	00h	Setting for measurement target		

Table 12.2 Register for Sequential Mode setting

Fig. 12.3 Sequential Mode timing

It differs from Normal Mode in the following points. DRDY (B) output timing of Sequential Mode does not change, and the data is sent at the communication start timing When I2C and MV3830 transfer timing conflicts.

Correction operation

By executing the mode for AD conversion, a correction operation is automatically performed for each AD conversion using the correction coefficient previously written in the NVM, and the AD conversion result subjected to the secondary (or tertiary) correction can be retrieved. Please refer to the application note for correction coefficient calculation. Here, only the correction formula using the correction coefficient is shown.

Temperature sensor

The formula of correction calculation for temperature sensor is shown below.

$$\begin{aligned} AD_{correct} &= \left\{ \left(\frac{CC_TSENS_T \times 2^8 \times AD_{raw}}{2^{24-2\times BS_TSENS_T}} + CC_TSENS_S \times 2^8 \right) \times \frac{AD_{raw}}{2^{24-2\times BS_TSENS_S}} + CC_TSENS_F \times 2^8 \right\} \\ &\times \frac{AD_{raw}}{2^{24-2\times BS_TSENS_F}} + CC_TSENS_Z \times 2^8 \end{aligned}$$

Symbol	Register Name	Contents	Bit	Register	NVM
	CC_CH0_T/			18h-19h/	86h/
CC_TSENS_T	CC_CH1_FZ/	3rd order correction coefficient	16	20h-21h/	8Ah/
	CC_CH2_FZ			38h-39h	96h
	CC_CH0_S/			16h-17h/	85h/
CC_TSENS_S	CC_CH1_ZS/	2nd order correction coefficient	16	1Eh-1Fh/	89h/
	CC_CH2_ZS			36h-37h	95h
	CC_CH0_F/			14h-15h/	84h/
CC_TSENS_F	CC_CH1_ZF/	1st order correction coefficient	16	1Ch-1Dh/	88h/
	CC_CH2_ZF			34h-35h	94h
	CC_CH0_Z/			12h-13h/	83h/
CC_TSENS_Z	CC_CH1_ZZ/	Zero order correction coefficient	16	1Ah-1Bh/	87h/
	CC_CH2_ZZ			32h-33h	93h
	BITSHIFT_CH0_T/			4Bh_B[7:4]/	9Fh_B[7:4]/
BS_TSENS_T	BITSHIFT_CH1_FF/	Bit shift of AT	4	4Ch_B[3:0]/	A0h_B[11:8]/
	BITSHIFT_CH2_FF			52h_B[3:0]	A3h_B[11:8]
	BITSHIFT_CH0_S/			4Ah_B[3:0]/	9Fh_B[11:8]/
BS_TSENS_S	BITSHIFT_CH1_ZS/	Bit shift of B⊤	4	4Ch_B[7:4]/	A0h_B[15:12]/
	BITSHIFT_CH2_ZS			52h_B[7:4]	A3h_B[15:12]
	BITSHIFT_CH0_F/			4Ah_B[7:4]/	9Fh_B[15:12]/
BS_TSENS_F	BITSHIFT_CH1_ZF/	Bit shift of C⊤	4	4Bh_B[3:0]/	9Fh_B[3:0]/
	BITSHIFT CH2 ZF			51h B[3:0]	A2h B[3:0]

 $AD_{correct}$: Correction value of temperature sensor AD_{raw} : AD raw data of temperature sensor

%register value is 2's complement

Physical sensor (resistive bridge type)

The formula of correction calculation for physical sensor is shown below.

$$\begin{split} AD_{correct} &= \left\{ \left(\frac{phys_3rdsens \times AD_{raw}}{2^{24-2\times BS_PHY_T}} + phys_2ndsens \right) \times \frac{AD_{raw}}{2^{24-2\times BS_PHY_S}} + phys_1stsens \right\} \\ &\times \frac{AD_{raw}}{2^{24-2\times BS_PHY_F}} + phys_offset \end{split}$$

However,

$$phys_3rdsens = \left(\frac{CC_PHY_TS \times 2^8 \times AD_{temp}}{2^{24-2\times BS_PHY_TS}} + CC_PHY_TF \times 2^8\right) \times \frac{AD_{temp}}{2^{24-2\times BS_PHY_TF}} + CC_PHY_TZ \times 2^8$$

$$phys_2ndsens = \left(\frac{CC_PHY_SS \times 2^8 \times AD_{temp}}{2^{24-2\times BS_PHY_SS}} + CC_PHY_SF \times 2^8\right) \times \frac{AD_{temp}}{2^{24-2\times BS_PHY_SF}} + CC_PHY_SZ \times 2^8$$

AD_{correct} : Correction value of physical sensor

 AD_{raw} : AD raw data of physical sensor

$$phys_offset = \left(\frac{CC_PHY_ZS \times 2^8 \times AD_{temp}}{2^{24-2\times BS_PHY_ZS}} + CC_PHY_ZF \times 2^8\right) \times \frac{AD_{temp}}{2^{24-2\times BS_PHY_ZF}} + CC_PHY_ZZ \times 2^8$$

Symbol	Register Name	Contents	Bit	Register	NVM
CC_PHY_TS	CC_CH1_TS/ CC_CH2_TS	2nd order coefficient for temperature	16	30h-31h/ 48h-49h	92h/ 9Eh
CC_PHY_TF	CC_CH1_TF/ CC_CH2_TF	1st order coefficient for temperature	16	2Eh-2Fh/ 46h-47h	91h/ 9Dh
CC_PHY_TZ	CC_CH1_TZ/ CC_CH2_TZ	Zero order coefficient for temperature	16	2Ch-2Dh/ 44h-45h	90h/ 9Ch
CC_PHY_SS	CC_CH1_SS/ CC_CH2_SS	2nd order coefficient for temperature	16	2Ah-2Bh/ 42h-43h	8Fh/ 9Bh
CC_PHY_SF	CC_CH1_SF/ CC_CH2_SF	1st order coefficient for temperature	16	28h-29h/ 40h-41h	8Eh/ 9Ah
CC_PHY_SZ	CC_CH1_SZ/ CC_CH2_SZ	Zero order coefficient for temperature	16	26h-27h/ 3Eh-3Fh	8Dh/ 99h
CC_PHY_FS	CC_CH1_FS/ CC_CH2_FS	2nd order coefficient for temperature	16	22h-23h/ 3Ch-3Dh	8Ch/ 98h
CC_PHY_FF	CC_CH1_FF/ CC_CH2_FF	1st order coefficient for temperature	16	20h-21h/ 3Ah-3Bh	8Bh/ 97h
CC_PHY_FZ	CC_CH1_FZ/ CC_CH2_FZ	Zero order coefficient for temperature	16	20h-21h/ 38h-39h	8Ah/ 96h
CC_PHY_ZS	CC_CH1_ZS/ CC_CH2_ZS	2nd order coefficient for temperature	16	1Eh-1Fh/ 36h-37h	89h/ 95h
CC_PHY_ZF	CC_CH1_ZF/ CC_CH2_ZF	1st order coefficient for temperature	16	1Ch-1Dh/ 34h-35h	88h/ 94h
CC_PHY_ZZ	CC_CH1_ZZ/ CC_CH2_ZZ	Zero order coefficient for temperature	16	1Ah-1Bh/ 32h-33h	87h/ 93h
BS_PHYS_T	BITSHIFT_CH1_T/ BITSHIFT_CH2_T	Bit shift	4	50h_B[3:0]/ 56h B[3:0]	A2h_B[11:8]/ A5h B[11:8]
BS_PHYS_S	BITSHIFT_CH1_S/ BITSHIFT_CH2_S	Bit shift	4	4Fh_B[7:4]/ 55h_B[7:4]	A1h_B[7:4]/ A4h_B[7:4]
BS_PHYS_F	BITSHIFT_CH1_F/ BITSHIFT_CH2_F	Bit shift	4	4Dh_B[3:0]/ 53h B[3:0]	A0h_B[3:0]/ A3h_B[3:0]
BS_PHYS_TS	BITSHIFT_CH1_TS/ BITSHIFT_CH2_TS	Bit shift	4	50h_B[7:4]/ 56h_B[7:4]	A2h_B[15:12]/ A5h B[15:12]
BS_PHYS_TF	BITSHIFT_CH1_TF/ BITSHIFT_CH2_TF	Bit shift	4	4Fh_B[3:0]/ 55h_B[3:0]	A1h_B[3:0]/ A4h_B[3:0]
BS_PHYS_SS	BITSHIFT_CH1_SS/ BITSHIFT_CH2_SS	Bit shift	4	4Eh_B[3:0]/ 54h_B[3:0]	A1h_B[11:8]/ A4h_B[11:8]
BS_PHYS_SF	BITSHIFT_CH1_SF/ BITSHIFT_CH2_SF	Bit shift	4	4Eh_B[7:4]/ 54h_B[7:4]/	A1h_B[15:12]/ A4h_B[15:12]
BS_PHYS_FS	BITSHIFT_CH1_FS/ BITSHIFT_CH2_FS	Bit shift	4	4Dh_B[7:4]/ 53h_B[7:4]	A0h_B[7:4]/ A3h_B[7:4]
BS_PHYS_FF	BITSHIFT_CH1_FF/ BITSHIFT_CH2_FF	Bit shift	4	4Ch_B[3:0]/ 52h_B[3:0]	A0h_B[11:8]/ A3h_B[11:8]
BS_PHYS_ZS	BITSHIFT_CH1_ZS/ BITSHIFT_CH2_ZS	Bit shift	4	4Ch_B[7:4]/ 52h_B[7:4]	A0h_B[15:12]/ A3h_B[15:12]
BS_PHYS_ZF	BITSHIFT_CH1_ZF/ BITSHIFT_CH2_ZF	Bit shift	4	4Bh_B[3:0]/ 51h_B[3:0]	9Fh_B[3:0]/ A2h_B[3:0

$$phys_1stsens = \left(\frac{CC_PHY_FS \times 2^8 \times AD_{temp}}{2^{24-2\times BS_PHY_FS}} + CC_PHY_FF \times 2^8\right) \times \frac{AD_{temp}}{2^{24-2\times BS_PHY_FF}} + CC_PHY_FZ \times 2^8$$

T: 24bits correction temperature value %register value is 2's complement

©2025 Mitsumi Electric Co., Ltd. All rights reserved. The contents of this document are subject to change without notice. The details listed here are not a guarantee.

MITSUMI ELECTRIC CO., LTD. Semiconductor Business div. https://product.minebeamitsumi.com/en/product/category/ics/

Retrieve temperature and physical value

The Result Register value retrieved in the mode for AD conversion is the corrected value by default. Since the correction calculation is performed automatically every AD conversion, the user can acquire temperature and physical value using the following calculation formula.

The AD result value in the temperature calculation formula assumes the AD conversion result of the temperature sensor read in 16 bits length using the RESULT READ command explained in I2C command format. When the AD conversion result of the temperature sensor is read with a length of 24 bits, substitute the value obtained by shifting the AD conversion result to the right by 8 bits into the AD result value in the formula.

Temperature (16bits output) = (AD result value - 2^{15}) / $2^{G_{TSENS_Z}}$ Pressure (24bits output) = (AD result value - 2^{23}) / $2^{G_{PHYS_ZZ+8}}$

You can substitute as below by bit operation.

Temperature (16bits output) = (MSB inversion of AD result value) / $2^{G_{TSENS_Z}}$ Pressure (24bits output) = (MSB inversion of AD result value) / $2^{G_{PHYS_ZZ+8}}$

G_TSENS_Z and G_PHYS_ZZ in the equation is the bit shift amount when programing the correction coefficient in NVM.

Example

You can calculate temperature(16bits output) at AD result value(decimal)=5000+2¹⁵, G_TSENS_Z=7 (Temperature resolution = 1 / 2⁷ = 0.0078deg.C) Temperature (16bit output) = (AD result value - 2¹⁵) / 2^{G_TSENS_Z} = (5000 + 2¹⁵ - 2¹⁵) / 2⁷ = 5000 / 128 = 39.0625 [deq.C]

VRG external input mode

A part of MV3830 mounted circuit (PGA, ADC, OSC, Digital, etc.) operates with a 1.8 V power supply (VRG terminal) supplied from the built-in regulator, but the EXRG terminal to "High", it is possible to apply a 1.8 V power supply from the outside.

Time-dependent change correction function

MV3830 uses external reference sensor to correct time-dependent change. For details of them, see Register map.

Sensor open/short detector

MV3830 has Sensor open/short detector functions. MV3830 can be detected as follows when a failure occurs in the sensor connection.

Target node

- 1) Sensor plus input (IC connect VREFP terminal)
- 2) Sensor minus input (IC connect COMx terminal, x=0,1,2)
- 3) Sensor plus output (IC connect AxP terminal, x=0,1,2)
- 4) Sensor minus output (IC connect AxM terminal, x=0,1,2)

Failure mode

- 1) GND short failure: MV3830 can detect failure when host and this IC cannot communicate.
 - MV3830 can detect failure when Sensor conversion value is abnormal.
- 2) Power line short failure: MV3830 can detect failure when Sensor conversion value is abnormal.
- 3) Open failure: MV3830 can detect failure when check result stack register.

Operate of ODET

Target node detect open failure (hereinafter, this is called "sensor connection detection"). This function enables SET_ODET=1, executed BootLoad. For details of them, see Register map.
SERIAL INTERFACE

I2C Fast mode (fmax = 400kHz) of serial communication interface are supported.

Communication speed

(unless otherwise specified, Input filter=ON, $C_{OL} \leq 400 pF$)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
I2C communication speed	BR I2CFm		-	-	400k	bps

I2C command format

I2C address is the total of 8 bits; the first 7 bits are slave address and the remaining 1 bit is R/W bit. Users can set the slave address (7 bits) of MV3830 optionally by writing to NVM (Default value is 0x4D). However, 0000xxx and 1111xxx cannot be used because they are reserved addresses. *Please use this product after confirming I2C specification and understanding the details.

I2C basic command format

Fig. 13.1 I2C basic command format

Read only resister response

Resister of NVM set access restrictions individually. See Register address map, NVM Address map. Writing address, data of Read only resister is ACK response. No write to register because read only.

Read response on access restrictions (NACK response).

In the following case, returns NACK response when an address is specified but address itself is valid. Whether it is read/write possible depends on the access restrictions.

- · Resister read can't access by access restrictions.
- · NVM read by state of BootLoad and ACTIVE (independent of access level).
- · Reading unmapped areas.

RESULT READ command format

With RESULT READ command, MV3830 reads the data without address designation to transfer the status and the data of RES_STACK1, RES_STACK2, and RES_STACK3, which are stored in the register address 8'h00 to 8'h08, in sequence to the host. However, it the response when writing the address immediately before this command must be an ACK response.

After the master receives 1-byte data and returns ACK, the next 1-byte data is sent to the master. If it returns NACK, the data sent subsequently will be 8'hFF. The readable data value of the IC changes by error detection setting (SET_CRC setting) of I2C communication. The read data value is shown below.

With CRC (SET_CRC=0), when the master reads the data exceeding 9 bytes, the data of 10 bytes and after will be 8'hFF. Without CRC (SET_CRC=1), when the master reads the data exceeding 12 bytes, the data of 13 bytes and after will be 8'hFF.

The data length is set for each channel, and it is 16 or 24 bits from the top of the AD conversion result. Status grant and data length are set following register address 8'h57.

Fig. 13.3 RESULT READ command format with status

READ command format

With READ command, MV3830 reads the data after address designation to transfer it. To read the data from NVM region, it performs clock stretching before reading.

WRITE command format

With WRITE command, MV3830 sends the write data after address designation to write values. To write the data in NVM region, it performs clock stretching after the master receives ACK for the write data.

Write data

BURST READ command format

With BURST READ command, a process that ACK is returned after 1-byte data is transferred is repeated. When NACK is returned, the subsequent processing is terminated and 8'hFF data is transferred.

Addresses are automatically incremented. When a register address reaches 8'h7F and 8'hAF, it is no longer incremented and the processing is repeated at the same address.

Specify address

(8 bit + acknowledge) × n

Fig. 13.6 BURST READ command format

BURST WRITE command format

With BURST WRITE command, 1-byte data is repeatedly written.

Addresses are automatically incremented. When a register address reaches 8'h7F and 8'hAF, it is no longer incremented and the processing is repeated at the same address.

Write data

Restart condition

The communication continues using Restart condition instead of the combination of start condition and stop condition as a condition between address designation and data read.

Combination of start condition and stop condition

Restart condition

CRC addition function for error detection of I2C

MV3830 has a CRC addition function to detect accidental data error of I2C communication. This function becomes valid by setting SET_CRC=1 of register FILT_SET. The specification is shown below.

Table 13.1 CRC addition function for error detection of I2C communication

Item	Description
Condition	SET_CRC=1
Check target	All register(Addr.=00h \sim 66h)
Command	READ, BURST READ, RESULT READ
Name	CRC-8-Dallas/Maxim
Polynomial	$x^8 + x^5 + x^4 + 1$
Initial value	8'hFF
Clear condition	clear every CRC output
Output inversion	no
CRC value of registers under access control	8'hFF

READ command

CRC value is calculated from Slave address+R, Address and Data.

Specify address

Read data

S	Slave address	R	А	Data	А	CRC	NA/ A	Р
---	---------------	---	---	------	---	-----	----------	---

Fig. 13.9 READ + CRC command format

BURST READ command

First CRC value is calculated from Slave address+R, Address and Data. Next CRC value is calculated from only Data.

Specify address

Fig. 13.10 BURST READ + CRC command format

RESULT READ command

First CRC value is calculated from Slave address +R, STATUS and RES_STACK1. Next CRC value is calculated from RES_STACK2. For details of STATUS, refer to the description of register address 8'h57.

Fig. 13.11 RESULT READ + CRC command format

I2C AC characteristics

(unless otherwise specified, Input filter=ON, $C_{OL} \leq 400 pF$)

Itom	Symbol		Unit			
Rem	Symbol	min.	typ.	max.	Offic	
SCL clock frequency	fscl	0	-	400k	Hz	
Start condition setup time	t su;sta	600	-	-	ns	
Start condition hold time	t _{HD;STA}	600	-	-	ns	
Stop condition setup time	t _{su;sto}	600	-	-	ns	
Data setup time	tsu;dat	100	-	-	ns	
Data hold time (note ¹⁷)	thd;dat	20	-	-	ns	
SCL rise time	t _{rCL}	-	-	300	ns	
SCL fall time	t _{fCL}	10	-	300	ns	
SDA rise time	t _{rDA}	-	-	300	ns	
SDA fall time	t _{fDA}	10	-	300	ns	

note¹⁷: This product does not have the function to retain data in SDA. Please ensure the hold of SDA with 20nsec for the area where SCL falling edge is not defined.

STATE

State definition

State definition is shown below.

- 1) Sleep : Able to receive command, set registers. Current consumption at Active is minimum.
- 2) Standby : State of waiting next AD conversion at Normal Mode. Able to receive command, set registers.
- 3) Warm : COM terminal switch specified for AD conversion is on.
- 4) Idle : Able to receive command, set registers, and access to NVM.
- 5) BootLoad /Reset : State to copy data from NVM to register after power-ON or reset, or state of ODET
- 6) Active (Normal) : State to convert AD at Normal Mode. Common name is "Normal Mode".
- 7) Active : State to convert AD at Sequential Mode. Common name is "Sequential Mode". (Sequential)

State transition

Table 14.1 State transition list

IC operation	State										
setting	Sleep	Standby	Warm	Idle	Active (Normal)	Active (Sequential)					
Reset	Shift	to each state depe	(ending on NVM se) tting after reset all	register and Boot	tLoad					
Sleep	O (Keep)	O Shift to Sleep	O Shift to Sleep	O Shift to Sleep	O Shift to Sleep after AD conversion	O Shift to Sleep after AD conversion					
Standby	O Shift to Standby	O (Keep)	O Shift to Standby	O Shift to Standby	O Shift to Standby after AD conversion	O Shift to Standby after AD conversion					
Warm	O Shift to Warm	O Shift to Warm	O (Keep)	O Shift to Warm	O Shift to Warm after AD conversion	O Shift to Warm after AD conversion					
Idle	O Shift to Idle	O Shift to Idle	O Shift to Idle	O (Keep)	O Shift to Idle after AD conversion	O Shift to Idle after AD conversion					
BootLoad	Shift to each	(state depending) on NVM setting af	ter BootLoad	(Prohibited whe bit[2:0] = 00 01) n NVM Addr.81h 1b or 010b or 1b)					
Active (Normal)	O Shift to Normal Mode	O Shift to Normal Mode	O Shift to Normal Mode	O Shift to Normal Mode	O (Keep)	O Shift to Normal Mode after AD conversion					
Active (Sequential)	O Shift to Sequential Mode after AD conversion	O (Keep)									

*The operating mode setting except Reset command is not accepted during BootLoad.

**Reset by RSTB terminal is same as Reset command above table.

After power input, the digital circuit is reset using POR circuit with a built-in MV3830. After reset, BootLoad is executed. At this time, any register cannot be written through the communication line because NVM contents are read in the register. (Data can be read.) After BootLoad, MV3830 transfers to another status defined in Table 13.1 according to the value set in MODE [2:0] of register address 0Fh. Also, it transfers to appropriate state following the command sent from the host. When an error occurs during the BootLoad, MV3830 waits in the Sleep state. One or both of ERR_CRC and ERR_INFO whose resister address is 09h are set to "1". For details of them, see Register map.

Hard-ware reset

RSTB terminal can reset hardware (entire digital circuit). After the reset of the hardware, MV3830 transfers to BootLoad.

REGISTER

Register address map

Boot Load

For Address = 0Ch to 63h, data is read from NVM at Bootload.

Access restriction

- 1) LV1: R / W is possible in the initial state. Registers accessible to end users
- 2) LV2: Depending on product deployment, there is a possibility of publication
- 3) LV3: Register that assumed to be used only for evaluation and inspection

Access method to LV 2, LV 3: See the section of register address 66h

			lable	215.1	Regis	ster ac	Idress	map ((1/3)				
Item	Address	Init. Val	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Read	Write
RES_STACK1	00h	00h				RES_STAC	CK1[23:16]				R	LV1	-
RES_STACK1	01h	00h				RES_STA	CK1[15:8]				R	LV1	-
RES_STACK1	02h	00h				RES_STA	ACK1[7:0]				R	LV1	-
RES_STACK2	03h	00h				RES_STAC	CK2[23:16]				R	LV1	-
RES_STACK2	04h	00h				RES_STA	CK2[15:8]				R	LV1	-
RES_STACK2	05h	00h				RES_STA	ACK2[7:0]				R	LV1	-
RES_STACK3	06h	00h				RES_STAC	CK3[23:16]				R	LV1	-
RES_STACK3	07h	00h				RES_STA	CK3[15:8]				R	LV1	-
RES_STACK3	08h	00h				RES_STA	ACK3[7:0]				R	LV1	-
ST	09h	00h	Reserve	ERR_CRC	ERR_INFO	NVMLOAD	RDY_DATA		STATUS[2:0]	R	LV1	-
ST_SENSOR	0Ah	00h	Reserve	Reserve	Reserve	DONE_ODET	ERR_CH2	ERR_CH1	ERR_CH0_EXT	ERR_CH0_INT	R	LV1	-
ST_INFO	0Bh	08h or 48h	0	0 or 1	0	0	1	0	0	0	R	LV1	-
I2CA DDR	0Ch	4Dh	Reserve	I2C ADDR[6:0]					R	LV1	-		
FILT_SET	0Dh	00h	Reserve	Reserve	Reserve	SET_CRC	SELF_CHK	CIC_OSRALL	IIR_CC	EF[1:0]	RW	LV1	LV1
MEAS_EN	0Eh	00h	SET_SI	Q[1:0]	EN_3F	RD[1:0]	EN_2N	ID[1:0]	EN_19	T[1:0]	RW	LV1	LV1
MEAS_CTRL	OFh	00h	Reserve		TSTBY[2:0]		Reserve		MODE[2:0]		RW	LV1	LV1
GPOTH_1	10h	00h	SET_GPO	DTH[1:0]			GPOTH_D	ATA[13:8]			RW	LV1	LV1
GPOTH_0	11h	00h				GPOTH_E	DATA[7:0]				RW	LV1	LV1
СС_СН0_Z_1	12h	xxh				CC_CH0	_Z[15:8]				RW	LV1	LV3
CC_CH0_Z_0	13h	xxh				CC_CH	D_Z[7:0]				RW	LV1	LV3
СС_СН0_F_1	14h	xxh				CC_CH0	_F[15:8]				RW	LV1	LV3
CC_CH0_F_0	15h	xxh				CC_CH)_F[7:0]				RW	LV1	LV3
СС_СН0_5_1	16h	xxh				CC_CH0	_S[15:8]				RW	LV1	LV3
CC_CH0_S_0	17h	xxh				CC_CH)_S[7:0]				RW	LV1	LV3
СС_СН0_Т_1	18h	xxh				CC_CH0	_T[15:8]				RW	LV1	LV3
СС_СНО_Т_О	19h	xxh				CC_CH)_T[7:0]				RW	LV1	LV3
СС_СН1_ZZ_1	1Ah	xxh				CC_CH1	_ZZ[15:8]				RW	LV1	LV3
CC_CH1_ZZ_0	1Bh	xxh				CC_CH1	_ZZ[7:0]				RW	LV1	LV3
CC_CH1_ZF_1	1Ch	xxh				CC_CH1	_ZF[15:8]				RW	LV1	LV3
CC_CH1_ZF_0	1Dh	xxh				CC_CH1	_ZF[7:0]				RW	LV1	LV3
CC_CH1_ZS_1	1Eh	xxh				CC_CH1	_ZS[15:8]				RW	LV1	LV3
CC_CH1_ZS_0	1Fh	xxh				CC_CH1	_ZS[7:0]				RW	LV1	LV3

(1) . .

			Iable	17.2	Reyis		iui ess	пар і	(2/3)				
Item	Address	Init. Val	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Read	Write
CC_CH1_FZ_1	20h	xxh				CC_CH1_	_FZ[15:8]				RW	LV1	LV3
CC_CH1_FZ_0	21h	xxh				CC_CH1	11_FZ[7:0]				RW	LV1	LV3
CC_CH1_FF_1	22h	xxh				CC_CH1_	FF[15:8]				RW	LV1	LV3
CC_CH1_FF_0	23h	xxh				CC_CH1	_FF[7:0]				RW	LV1	LV3
CC_CH1_FS_1	24h	xxh				CC_CH1_	1_FS[15:8]				RW	LV1	LV3
CC_CH1_FS_0	25h	xxh				CC_CH1	1_FS[7:0]				RW	LV1	LV3
CC_CH1_SZ_1	26h	xxh				CC_CH1_	1_SZ[15:8]				RW	LV1	LV3
CC_CH1_SZ_0	27h	xxh				CC_CH1	L_SZ[7:0]				RW	LV1	LV3
CC_CH1_SF_1	28h	xxh				CC_CH1_	_SF[15:8]					LV1	LV3
CC_CH1_SF_0	29h	xxh				CC_CH1	L_SF[7:0]				RW	LV1	LV3
CC_CH1_SS_1	2A h	xxh				CC_CH1_	_SS[15:8]				RW	LV1	LV3
CC_CH1_SS_0	2Bh	xxh				CC_CH1	_SS[7:0]				RW	LV1	LV3
CC_CH1_TZ_1	2Ch	xxh		CC_CH1_TZ[15:8]							RW	LV1	LV3
CC_CH1_TZ_0	2Dh	xxh		CC_CH1_TZ[7:0]							RW	LV1	LV3
CC_CH1_TF_1	2Eh	xxh		CC_CH1_TF[15:8]							RW	LV1	LV3
CC_CH1_TF_0	2Fh	xxh		CC_CH1_TF[7:0]							RW	LV1	LV3
CC_CH1_TS_1	30h	xxh		CC_CH1_TS[15:8]							RW	LV1	LV3
CC_CH1_TS_0	31h	xxh		CC_CH1_TS[7:0]							RW	LV1	LV3
CC_CH2_ZZ_1	32h	xxh				CC_CH2	ZZ[15:8]				RW	LV1	LV3
CC_CH2_ZZ_0	33h	xxh				CC_CH2	_ZZ[7:0]				RW	LV1	LV3
CC_CH2_ZF_1	34h	xxh				CC_CH2_	_ZF[15:8]				RW	LV1	LV3
CC_CH2_ZF_0	35h	xxh				CC_CH2	_ZF[7:0]				RW	LV1	LV3
CC_CH2_ZS_1	36h	xxh				CC_CH2	ZS[15:8]				RW	LV1	LV3
CC_CH2_ZS_0	37h	xxh		CC_CH2_ZS[7:0]						RW	LV1	LV3	
CC_CH2_FZ_1	38h	xxh				CC_CH2_	_FZ[15:8]				RW	LV1	LV3
CC_CH2_FZ_0	39h	xxh				CC_CH2	_FZ[7:0]				RW	LV1	LV3
CC_CH2_FF_1	3A h	xxh				CC_CH2_	_FF[15:8]				RW	LV1	LV3
CC_CH2_FF_0	3Bh	xxh				CC_CH2	_FF[7:0]				RW	LV1	LV3
CC_CH2_FS_1	3Ch	xxh				CC_CH2_	FS[15:8]				RW	LV1	LV3
CC_CH2_FS_0	3Dh	xxh				CC_CH2	_FS[7:0]				RW	LV1	LV3
CC_CH2_SZ_1	3Eh	xxh				CC_CH2	_SZ[15:8]				RW	LV1	LV3
CC_CH2_SZ_0	3Fh	xxh				CC_CH2	_SZ[7:0]				RW	LV1	LV3
CC_CH2_SF_1	40h	xxh				CC_CH2_	_SF[15:8]				RW	LV1	LV3
CC_CH2_SF_0	41h	xxh				CC_CH2	_SF[7:0]				RW	LV1	LV3
CC_CH2_SS_1	42h	xxh				CC_CH2_	SS[15:8]				RW	LV1	LV3
CC_CH2_SS_0	43h	xxh				CC_CH2	_SS[7:0]				RW	LV1	LV3
CC_CH2_TZ_1	44h	xxh				CC_CH2_	TZ[15:8]				RW	LV1	LV3
CC_CH2_TZ_0	45h	xxh				CC_CH2	_TZ[7:0]				RW	LV1	LV3
CC_CH2_TF_1	46h	xxh				CC_CH2_	TF[15:8]				RW	LV1	LV3
CC_CH2_TF_0	47h	xxh				CC_CH2	_TF[7:0]				RW	LV1	LV3
CC_CH2_TS_1	48h	xxh				CC_CH2_	TS[15:8]				RW	LV1	LV3
CC_CH2_TS_0	49h	xxh				CC_CH2	_TS[7:0]				RW	LV1	LV3
CC_SET_SHIFT_C	4Ah	xxh		BITSHIFT_	CH0_F[3:0]			BITSHIFT_	CH0_S[3:0]		RW	LV1	LV3
CC_SET_SHIFT_B	4Bh	xxh		BITSHIFT_	CH0_T[3:0]			BITSHIFT_	CH1_ZF[3:0]		RW	LV1	LV3
CC_SET_SHIFT_A	4Ch	xxh		BITSHIFT_C	CH1_ZS[3:0]			BITSHIFT_	CH1_FF[3:0]		RW	LV1	LV3
CC_SET_SHIFT_9	4Dh	xxh		BITSHIFT_C	CH1_FS[3:0]			BITSHIFT_	CH1_F[3:0]		RW	LV1	LV3
CC_SET_SHIFT_8	4Eh	xxh		BITSHIFT_C	CH1_SF[3:0]			BITSHIFT_O	CH1_SS[3:0]		RW	LV1	LV3
CC_SET_SHIFT_7	4Fh	xxh		BITSHIFT_	CH1_S[3:0]			BITSHIFT_O	CH1_TF[3:0]		RW	LV1	LV3
CC_SET_SHIFT_6	50h	xxh		BITSHIFT_C	CH1_TS[3:0]			BITSHIFT_	CH1_T[3:0]		RW	LV1	LV3
CC_SET_SHIFT_5	51h	0xh	Reserve	Reserve	Reserve	Reserve		BITSHIFT_	CH2_ZF[3:0]		RW	LV1	LV3
CC_SET_SHIFT_4	52h	xxh		BITSHIFT_C	CH2_ZS[3:0]			BITSHIFT_	CH2_FF[3:0]		RW	LV1	LV3
CC_SET_SHIFT_3	53h	xxh		BITSHIFT_C	CH2_FS[3:0]		BITSHIFT_CH2_F[3:0]			RW	LV1	LV3	
CC_SET_SHIFT_2	54h	xxh		BITSHIFT_C	CH2_SF[3:0]			BITSHIFT_C	CH2_SS[3:0]		RW	LV1	LV3
CC_SET_SHIFT_1	55h	xxh		BITSHIFT_	CH2_S[3:0]			BITSHIFT_C	CH2_TF[3:0]		RW	LV1	LV3
CC_SET_SHIFT_0	56h	xxh		BITSHIFT_C	CH2_TS[3:0]			BITSHIFT	CH2_T[3:0]		RW	LV1	LV3

Table 15.2 Register address map) (2/3))
---------------------------------	---------	---

Item	Address	Init. Val	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Read	Write
IO_SET	57h	00h	Reserve	Reserve	Reserve	Reserve	Reserve	SEL_RAW	SET_STAT	DIS_RES_WIDTH	RW	LV1	LV3
TRIM_VOFF1	58h	xxh				TRIM_VO	OFF1[7:0]				RW	LV1	LV3
TRIM_VOFF2	59h	xxh				TRIM_V	DFF2[7:0]				RW	LV1	LV3
CH0_FILT	5Ah	00h	CH0_0	SR[1:0]	(CH0_AVG[2:0)]	CH0_GAIN[2:0]			RW	LV1	LV3
CH1_FILT	5Bh	00h	CH1_0	SR[1:0]] CH1_AVG[2:0]			0	CH1_GAIN[2:0)]	RW	LV1	LV3
CH2_FILT	5Ch	00h	CH2_0	SR[1:0]	CH2_AVG[2:0]			0	CH2_GAIN[2:0]			LV1	LV3
CH_MISC_SET	5Dh	10h	Reserve	DIS_DEM_PGA	SET_DIFF	CON_VREFN	CH2_TYPE	CH1_TYPE	CH0_DISCON	CH0_SEL_EXTEMP	RW	LV1	LV3
TRIM1	5Eh	xxh		TRIM_LP	TRIM_LPVREF[3:0]			TRIM_LP	OSC[3:0]		RW	LV1	LV3
TRIM2	5Fh	xxh	Reserve	Reserve			TRIM_E	GR[5:0]	RW	LV1	LV3		
TRIM3	60h	xxh		TRIM_I	REF[3:0]			TRIM_RG[3:0]			RW	LV1	LV3
TRIM4	61h	xxh	SPD_O	SC[1:0]			TRIM_C	DSC[5:0]			RW	LV1	LV3
MON_SET	62h	00h	DIS_FILT	Reserve			SEL_G	PO[5:0]			RW	LV1	LV3
MISC_SET	63h	00h	SET_WARM	SET_ODET	SEL_CYC	EN_BI	TEST_ACT	9	SET_RGO[2:0)]	RW	LV1	LV3
NVM_TEST1	64h	00h	BULK_ODD_EN	BULK_EVEN_EN	MREAD_EN	CCMON_EN	OSCMON_EN	MA	RGIN_TRIM[2:0]	RW	LV2	LV2
NVM_TEST2	65h	00h	VTUNMON_EN	CORE_IBIAS_OVR_EN	OSC_OVR_EN	OSC_IBIAS_MON_EN	Reserve	DIS_CP	DIS_PROG	DIS_ERASE	RW	LV2	LV2
ACCS_CTRL	66h	00h	Reserve	Reserve	Reserve	Reserve	Reserve	EN_LV3	CTL_EN_LV3	EN_LV2	RW	LV2	Special

Table 15.3	Register	address	map ((3/3))

Details of register address map

RES_STACK1/2/3 (Addr. = 00h to 08h)

Table 15.4	Register	address	map	(1/25))
	REGISLEI	auuress	IIIap I	$(I) \leq J$	

Addre	SS	Initial Val.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
Result Register											
00h to (02h	00h	RES_ST	TACK1[23:	0]						R/-
(RES_STA	ACK1)	0011	Correct	ed sensor	convers	ion result	stored	in STACK1			LV1/-
03h to (05h	00h	RES_ST	ACK2[23:	0]	ion woodd	a ha u a d				R/-
(KES_STA	NCKZ)				Convers	ion result	stored	IN STACKZ			LV1/-
(RES_STA	ACK3)	00h	Correct	ed sensor	convers	ion result	stored	in STACK3			IV1/-
Order of sense	or: The order	of sensor	measurem	ent is spe	cified in	register N	IEAS_E	N (Addr.=0	Eh).		= • =/
Measurement	ment The sensors set in this register are measured in the order of EN_1ST, EN_2ND, and EN_3RD.										
Data storage:	a storage: Because of the use of stack structure, stored data is as shown below:										
					St	ored data	3				
	Result Reg	gister	Number of to be mea	f sensors sured =1	Numb to be	er of sen measured	sors d =2	Number of to be meas	sensors sured =3		
	RES_STACK	to be measured =1to be measured =2to be measured =3TACK1[23:0]Result of sensor set with EN_1STResult of sensor set with EN_2NDResult of sensor set with EN_3RD									
	RES_STACK	2[23:0]	00h (Initia	al value)	Resi set	ult of sens	sor 1ST	Result of set with B	sensor EN_2ND		
	RES_STACK	3[23:0]	00h (Initia	al value)	00h (Initial val	lue)	Result of set with	sensor EN_1ST		
The stored da value, it is nec	ta measured cessary to reti	in the Se rieve tem	equential M perature va	ode is as lue in Nori	shown I mal Mod	pelow. To e before	o retrie measur	ve temperat ring physical	ture-com I value in	pensated Sequent	physical al Mode.
					St	ored data	3				
	Result Re	gister	First, th measured	ne tempera in the Nor	ature is mal Moo	de.	ext, phy easured	sical quanti d in the Seq Mode.	ties are uential		
	RES_STACK	[1[23:0]	Temperati	ure conver	sion res	ult P	hysical	value conve result	ersion	\Box	
	RES_STACK	TACK2[23:0] (Default) Temperature conversion result									
	RES_STACK3[23:0](Default)(Default)										
For output dat	a format, see	e Retrieve	temperatu	re and phy	sical va	ue.					

ST (Addr. = 09h)

Table 15.5 Register address map (2/25)

Address	Initial Val.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
[Control Regis	ter]									
	00h	Reserve	ERR_CRC	ERR_INFO	NVMLOAD	RDY_DATA	STATUS	[2:0]		R/-
09h (ST)		ERR_CRC When ti 4Dh, an too. Clear co ERR_INFO 1) NV 2) Pro 3) No Clear co NVMLOAD transfer, 1 Clear co RDY_DAT This bit after Al result ro STATUS [000b: S 001b: A 010b: A 010b: N 101b: S 110b: B 111b: V	NVM CRC er his is "1" (Abi d the IC cann ondition: Rese D: Signal infor M MODE [2:0 ohibition settin state transiti ondition: Rese D: During Boo I: other statu ondition: End A: Signal dete is "0" in the se D conversion esister while the 2:0]: Represe leep active (Norma active (Sequer dle lone (Includir standby BootLoad Varm	ror detection normal), this I not shift to exc et or setting of ming prohibit 0] is set to 100 ng in CHx_SE on was availa et or cleared w otLoad, data s. of data transf ermining acqu state before Al completion. <i>A</i> this bit is "1", ents IC status. I) ntial)	signal. 0: Nor C becomes SI cept Reset. An f "0" while the ion setting (be 0b (Reset), or F is made. ble. when this regis transfer dete fer or Reset isition of conv C conversion e Also, when Al it is set to"0".	mal, 1: Abnorr eep, the I2C a d sensor conne e access restrice elow). 0: Norm 110b (BootLoc ster is no longe action signal fin version result execution after D conversion in	nal address is ection is LV hal, 1: Abr ad). er prohibit rom NVM	set to init ection isn 3 hormal ted. to REG.	ial value 't active, 0: data	LV1 /-

ST_SENSOR (Addr. = 0Ah)

				Table	15.6 Registe	er address	map (3/2	5)		
Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	Reser	ve		DONE_ODET	ERR_CH2	ERR_CH1	ERR_CH0_EXT	ERR_CH0_INT	R/-
0Ah (ST_SENSOR)	DIGI _AON	DONE circuit After to "0" Reset ERR0 open activa detec "0" w ERR0 0: No ERR0 0: No ERR0 Norm	ODET power i when S) or by CH* sho status ted wh ted. Thi hen acc CH2: Cl rmal) CH2: Cl rmal) CH1: Cl rmal) CH0_EX rmal, 0: CH0_IN al)	: Signa nput, " SET_OI setting own be is det ile no s is bit ca is bit ca cess res hannel hannel (T: Exte Norma T: Inte	I to notify comp 0" is set. After of DET is 0b. This "0" when acce low is a signal t ected as abno sensor is connect an be cleared by striction is LV3. 2 (A2P, A2M, O 1 (A1P, A1M, O ernal channel 0 al) ernal channel 0	completion of de completion of bit can be ci ss restriction to notify that rmal. There cted such as resetting I COM2) senso COM1) senso (AOP, AOM, 4) sensor co	tection phas of the detection leared by restrict is LV3. It the sensor fore, when the sensor for connectio the sensor for connectio the sensor for connectio the sensor for connectio the sensor for connectio the sensor for connectio the sensor	ion phase, "1" is a setting IC itself (H open status is de sensor connectio valuation, an abu / Reset, S/W Rese n detection resul n detection resul or connection det etection result (1	ection detection set. This is fixed 1/W Reset, S/W etected, and the on detection is normal status is et) or by setting t (1: Abnormal, t (1: Abnormal, ection result (1: : Abnormal, 0:	LV1/

ST_INFO (Addr. = 0Bh)

Table 15.7	Register	address	map	(4/25)
------------	----------	---------	-----	--------

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	08h or 48h	0	0 or 1	0	0	1	0	0	0	R/-
0Bh (ST_INFO)	DIGI _AON	Setting inf checking t follows: Internal External	ormation of his informa regulator a VRG applyi	¹ IC operation tion before ctivation mo ng mode: bi	DN mode. I AD conver de: bit[7:0] it[7:0] = 01	C's normal rsion. Valu] = 0000_: .00_1000b	operation les read in 1000b	can be conf Sleep mod	irmed by e are as	LV1/ -

I2CADDR (Addr. = 0Ch)

Table 15.8 Register address map (5/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	4Dh	Reserve	I2CADDR	ES[6:0]						R/-
OCh (I2CADDR)	DIGI _AON	I2CADDR [6:0]: I2C a	iddress car	n be confir	med.				LV1/ -

©2025 Mitsumi Electric Co., Ltd. All rights reserved. The contents of this document are subject to change without notice. The details listed here are not a guarantee.

MITSUMI ELECTRIC CO., LTD. Semiconductor Business div. https://product.minebeamitsumi.com/en/product/category/ics/

FILT_SET (Addr. = 0Dh)

Table 15.9 Register address map (6/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	Reserve			SET_CRC	SELF_CHK	CIC_OSRALL	IIR_COE	EF[1:0]	R/W
ODh (FILT_ SET)	DIGI _AON	SET_CRG "O" is a s for I2C of SELF_CH- normal of diagnosi converter failure in Fig. 15.1 CIC_OSF 0: Sta is valid 1: Ave setting Note: CIC_CC Specifies This so This so This fi 00b: f 01b: of 10b: of 10b: of 10b: of 11b: of 01b: of	C: CRC ac standard s communic lK: Contro- peration. s mode st d. The co- peration. s mode st d. The co- peration. s mode st d. The co- peration. <i>Check resul</i> 1.9 < <i>Check</i> <i>resul</i> . Controls RALL: Unif ndard set d.) erage curro g. This bit is SRALL sh s IIR filter setting cha lter off coef_filter toef_filter toef_filter off filter setting ref lata _ filter lata _ filter sing the I	Idition fur setting ar ation. ols self-d When "1 arts. In th pheral cir $dt = RES_{2}$ result < 2. dt < 1.9, 2. self-diago formly set ting (Sett rent is re- invalid wo ould be s coefficier nges outpended to b = 2 = 4 = 8 $= \frac{data_{1} - fil}{data_{2} - fil}$	action to detend no CRC full agnosis model " is set and his mode, the result enable cuit. STACK1÷ RES_1 1 ⇒ Normal 1 < Check result nosis mode s as OSR value ing of CH0_C duced by match when OSR value ing of CH0_C duced by match when OSR value ing of CH0_C duced by match the of	ect accidental nction. "1" is of the the internal Mode internal Mode internally geness sto determine STACK 2 $t \Rightarrow Abnormal$ hows the oper of each CH. $SR/CH1_OSR$, aking OSR value ue is 00b beca ep, Standby, a the internal Mode the is 00b beca ep, Standby, a the is 00b beca the is 00b beca	data error of I24 enable CRC func- tandard setting e command is e herated voltage (ne the presence ration flowchart. /CH2_OSR of Ad ue one level low uuse this is the m ind Warm. ut conversion no lode. ADC using IIR filters. and Warm. m at the end of	C commun tion and a and speci- xecuted, t fixed value or absen dr.=5Ah/5 ver than s hinimum se bise.	ication. dd CRC fies the he self- e) is AD ce of a iBh/5Ch tandard etting.	LV1/ LV1

Fig. 15.1 Controls self-diagnosis mode operation flowchart

MEAS_EN (Addr. = 0Eh)

Table 15.10 Register address map (7/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	SET_SEQ	0[1:0]	EN_3RD[[1:0]	EN_2ND[1	:0]	EN_1ST[1:0]	R/W
OEh (MEAS_EN)	DIGI _AON	SET_SEQ 00b: N (f [2:0] t 01b: T T 10b: S 11b: S 11b: S EN_1ST 00b: N 01b: T T (A 10b: S 11b: S 11b: S S 11b: S S EN_2ND For detai EN_3RD For detai ERR_INF 001b wh =00b.	[1:0]: Speci o target ERR_INFO so o 010b while emperature emperature emperature ensor connect ensor types ensor connect ensor types [1:0]: Speci o target emperature so ddr. =5Dh) ensor connect ensor types ensor types ensor types [1:0]: Speci l settings, resource [1:0]: Speci l settings, resource o set to "1" ile EN_1ST	cifies a me et to "1" v e this sett sensor co sensors r (Addr. = ected to Cl are specifies the fir sensor co sensors ar ected to Cl are specifies the fir sensor co sensors ar ected to Cl are specifies the fir sensor co sensors ar ected to Cl are specifies the fir sensor co sensor s ar ected to Cl are specifies the the effer to the when not [1:0] = 0	easuremen when not e ing is mad unnected to 5Dh). H1 fied in CH2 fied in CH2	at target in t execute AD le.) o CH0 specified 1_TYPE of C 2_TYPE of C 2_TYPE of C 2_TYPE of C 1_TYPE of C 1_TYPE of C 2_TYPE of C 2_TYPE of C asurement target on of register AD conversi N_2ND [1:C	the Seque conversion in CH0_ CH_MISC_S CH_MISC_S et in the N L_EXTEMI CH_MISC_S CH_MISC_S arget in the er EN_1ST get in the er EN_1ST on by sett 0] =00b a	ntial Mode n by settin _SEL_EXTE SET (Addr SET (Addr lormal Mo P of CH_M SET (Addr SET (Addr SET (Addr ne Normal [1:0]. Normal Mo [1:0]. ing MODE and EN_3	e. ng MODE EMP of a =5Dh). a =5Dh). de. ISC_SET a =5Dh). Mode. Mode. E [2:0] to RD [1:0]	LV1/ LV1

MEAS_CTRL (Addr. = 0Fh)

Table 15.11 Register address map (8/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	Reserve	TSTBY[2:	0]		Reserve	MODE[2	:0]		R/W
OFh (MEAS_CTRL)	DIGI _AON	TSTBY [2 000b: 0 001b: 1 010b: 1 010b: 1 101b: 4 100b: 1 101b: 1 110b: 1 110b: 1 111b: 0 Transition "One Sho AD conve SET_W. Shift to SET_W. Transiti AD conve SET_W. Transiti AD conve SEL_CYC= command 000b: S 001b: A 100b: F 100b: F 100b: F 110b: S	:0]: Specifi Oms LOMS LOMS LOOMS LOOMS LOOMS LOOOMS LOOOMS LOOOMS DNE Shot n state afte t" changes rsion is sho ARM=0 Sleep ARM=1 ion state aff version cor ift to Sleep ARM=1 ion state aff version cor ift to Sleep ift to Warm n the stanc al Mode", th co]: Specifie between e should b =1.If you of to acquirin Sleep Active(Norm Measureme Active(Sequi Measureme Colle Reset Standby BootLoad If NVM Ado Active. Narm	es standby er AD conve by the sett own below. Ter AD con nmand. Sleep, Id Sleep, Id Sleep, Id State of the State State of the State of	ersion com ting SET_W version cha le ormal), Act set to "One to Warm af peration. eset or Boc more who DRDY, the puld be 2 m nust be spe nust be spe nust be spe	e Normal M mand in w /ARM (Add anges depe tive(Sequer e Shot", and ter AD con ter AD con otLoad com en SEL_CY time from asec or mor ecified in M ecified in M ecified in M	ode. hich the st r. = 63h). nding on th ntial), Stand d the IC op version mands and (C=0, 28.5 n issuing the EAS_EN bit EAS_EN bit EAS_EN bit p, or 011b,	andby time Fransition s ne state of dby, Warm erating set d the next fms or mo ne Sequen [5:0] befo [7:6] befo do not iss	e is set to state after executing ting is set command ore when tial Mode rehand. rehand. ue during	LV1/ LV1

GPOTH (Addr. = $10h \sim 11h$)

Table 15.12 Register address map (9/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	SET_GPOTH	I[1:0]	GPOTH_D	ATA[13:8]				R/W
10h (GPOTH_1)	DIGI _AON	SET_GPOTH outputs the host. This (RES_STACH correction v. 00b: No c 01b: Com 10b: Com 10b: Com 11b: Com GPOTH_DAT bits width in	I [1:0]: Con AD conversi IC allows to alue to calcu omparison with parison with parison with TA [13:8]: Sp combination	trols outpution complet the GPO to the specifie late. Details <i>v</i> ith RES_ST RES_STAC RES_STAC Decifies the n with GPO	t signals c flag DR o output d threshol s of this fu ACK value K1 value K2 value threshold TH_DATA	from GPO DY (B), thi a signal o d (GPOTH_ inction are e (Signals a of RES_ST [7:0].	terminal. N s IC can ou nly when DATA). The given outsio re always o ACK value	When this utput signa a correcti se bits spe de the box utput fron by making	terminal als to the on value ecifies the (. : n GPO.)	LV1/ LV1
	00h	GPOTH_DA	FA[7:0]							R/W
11h (GPOTH_0)	DIGI _AON	Specifies the	e threshold in	n combinati	on with G	POTH_DAT	A [13:8].			LV1/ LV1

This register realizes the following functions.

Outline

Correction value (RES_STACK value) > Threshold (GPOTH_DATA value) Pulse output from GPO Correction value (RES_STACK value) \leq Threshold (GPOTH_DATA value) No pulse output from GPO

■GPO setting

- Resistor MON_SET SEL_GPO[5:0] = 6' b01_1000
- Resistor MON_SET SEL_GPO[5:0] = 6' b01_1001

■GPO output judgment

Correction value (RES_STACK value) > Threshold (GPOTH_DATA value) \cdots Pulse output from GPO Correction value (RES_STACK value) \leq Threshold (GPOTH_DATA value) \cdots No pulse output from GPO

Note: that the above RES_STACK value is RES_STACK*[23:10].

CC (Addr. = 12h~49h)

Table 15.13 Register address map (10/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
126-126	xxh	CC_CH0_	Z[15:0]							R/W
1211-1311 (CC_CH0_7)	DIGI	CC_CH0_	Z[15:0] :	Zero orde	er correct	ion coeffici	ent for te	emperature	e sensor	LV1/
(00_0110_2)	_AON	connecte	d to CH0.							LV3
14h-15h	xxh	CC_CH0_	F[15:0]							R/W
(CC CH0 F)	DIGI	CC_CH0_	F[15:0] :	1st orde	r correctio	on coefficie	ent for te	emperature	e sensor	LV1/
	_AON	connecte	d to CH0.							LV3
16h-17h	xxh	CC_CH0_	_S[15:0]							R/W
(CC_CH0_S)	DIGI	C_CH0_S	5[15:0] :	2nd order	correctio	on coefficie	nt for te	emperature	e sensor	LV1/
	AON	connecte								LV3
18h-19h	XXN	CC_CH0_	_I[15:0]	2 1 1						R/W
(СС_СНО_Т)	DIGI	CC_CHU_		3ra orae	r correcti	on coefficie	ent for te	emperature	e sensor	LV1/
	_AUN									
14h-1Rh	XXII		ZZ[15:0]	Offect to	moratura	charactoric	tic zoro c	rdor cooff	ciont for	K/ VV
(CC, CH1, ZZ)	DIGI	the sense	_ZZ[15:0] :	d to CH1 c	nperature r zero ord	e characteris	n coeffici	ant for tem	noraturo	LV1/
(00_0/11_22)	_AON	sensor co	nnected to	n CH1			II COEIIICI		perature	LV3
	xxh	CC CH1	ZF[15:0]	0.111						R/W
1Ch-1Dh		CC CH1	ZE[15:0]	. Offset te	mperature	e characteri	stic 1st o	rder coeffi	cient for	
(CC_CH1_ZF)	DIGI	the sense	or connected	ed to CH1	or 1st ord	er correctio	n coefficie	ent for tem	perature	LV1/
	_AON	sensor co	onnected to	o CH1.						LV3
	xxh	CC_CH1_	ZS[15:0]							R/W
1Eh-1Fh	DICI	CC_CH1_	ZS[15:0]	: Offset te	mperature	characteris	stic 2nd o	rder coeff	cient for	1\/1/
(CC_CH1_ZS)	AON	the sense	or connecte	ed to CH1 of	or 2nd ord	er correctio	n coefficie	ent for tem	perature	
	_//0//	sensor co	onnected to	o CH1.						LVU
201 211	xxh	CC_CH1_	_FZ[15:0]							R/W
20n-21n (CC_CH1_E7)	DIGI	CC_CH1_	FZ[15:0] :	1st order	temperat	ure charact	eristic zei	ro order co	pefficient	LV1/
	_AON	for the	sensor co	nnected t		r 3ra orae	r correct	ion coeffic	cient for	LV3
	vyh			connected						D /\\/
22h-23h				1 ct ordor	tomporatu	iro characto	rictic 1ct	ordor cooff	iciont for	
(CC_CH1_FF)	AON	the sense	r connecte	ad to CH1	temperatu					
	xxh	CC CH1	FS[15:0]							R/W
24h-25h	DIGI		FS[15:0]	1st order	temneral	ture charac	teristic 2r	nd order co	oefficient	1.V1/
(CC_CH1_FS)	AON	for the se	ensor conn	ected to C	H1.				Jernelene	LV3
	xxh	CC CH1	SZ[15:0]							R/W
26h-27h	DIGI	CC CH1	SZ[15:0] :	2nd orde	r tempera	ture charac	teristic ze	ro order co	pefficient	LV1/
(CC_CH1_52)	_AON	for the se	ensor conn	ected to C	H1.					LV3
206 206	xxh	CC_CH1_	_SF[15:0]							R/W
2811-2911 (CC CH1 SE)	DIGI	CC_CH1_	_SF[15:0] :	2nd orde	r tempera	ature charad	teristic 1	st order co	pefficient	LV1/
	_AON	for the se	ensor conn	ected to C	H1.					LV3
21h-28h	xxh	CC_CH1_	_SS[15:0]							R/W
(CC CH1 SS)	DIGI	CC_CH1_	SS[15:0]	2nd orde	r tempera	ture charac	teristic 2r	nd order co	pefficient	LV1/
	_AON	for the se	ensor conn	ected to C	H1.					LV3

	Initial										
Address	Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
2Ch-20h	xxh	CC_CH1_	TZ[15:0]							R/W	
(CC CH1 T7)	DIGI	CC_CH1	_TZ[15:0]:	3rd orde	r temperat	ture charact	eristic zer	o order c	oefficient	LV1/	
(00_011_12)	_AON	for the s	ensor conne	ected to C	H1.					LV3	
2Eh-2Eh	xxh	CC_CH1_	_TF[15:0]							R/W	
(CC_CH1_TE)	DIGI	CC_CH1_	_TF[15:0]:	3rd order	temperatu	ire characte	ristic 1st c	order coef	ficient for	LV1/	
(00_0/12_//)	_AON	the sense	or connecte	ed to CH1.						LV3	
30h-31h	xxh	CC_CH1_	_TS[15:0]							R/W	
(CC_CH1_TS)	DIGI	CC_CH1	_TS[15:0]:	3rd orde	r tempera	ture charac	teristic 2n	d order c	oefficient	LV1/	
(00_0/12_10)	_AON	for the s	ensor conne	ected to C	H1.					LV3	
32h-33h	xxh	CC_CH2	_ZZ[15:0]							R/W	
(CC_CH2_77)	DIGI	CC_CH2	_ZZ[15:0]:	Offset te	mperature	characteris	tic zero o	rder coeff	icient for	LV1/	
(00_0112_22)	_AON	the sense	or connecte	ed to CH2.						LV3	
34h-35h	xxh	CC_CH2	_ZF[15:0]							R/W	
(CC_CH2_ZE)	DIGI	CC_CH2	_ZF[15:0]:	Offset te	mperature	e characteri	stic 1st o	der coeff	icient for	LV1/	
(00_0//2_2/)	_AON	the sense	or connecte	ed to CH2.						LV3	
36h-37h	xxh	CC_CH2	_ZS[15:0]							R/W	
(CC_CH2_ZS)	DIGI	CC_CH2	_ZS[15:0]:	Offset te	mperature	characteris	stic 2nd o	rder coeff	icient for	LV1/	
(00_0112_20)	_AON	the sense	or connecte	ed to CH2.						LV3	
38h-39h	xxh	CC_CH2	_FZ[15:0]							R/W	
(CC CH2 FZ)	DIGI	CC_CH2	_FZ[15:0]:	1st order	temperat	ure charact	eristic zer	o order c	oefficient	LV1/	
(00_0)	_AON	for the s	ensor conne	ected to C	H2.					LV3	
34h-3Rh	xxh	CC_CH2	_FF[15:0]							R/W	
(CC_CH2_FF)	DIGI	CC_CH2	_FF[15:0]:	1st order	temperatu	ire characte	ristic 1st c	rder coeff	ficient for	LV1/	
(00_0112_11)	_AON	the sense	or connecte	ed to CH2.						LV3	
3Ch-3Dh	xxh	CC_CH2	_FS[15:0]							R/W	
(CC_CH2_ES)	DIGI	CC_CH2	_FS[15:0]:	1st order	r temperat	ture charact	teristic 2n	d order c	oefficient	LV1/	
(00_0/12_/0)	_AON	for the s	ensor conne	ected to C	H2.					LV3	
3Fh-3Fh	xxh	CC_CH2	_SZ[15:0]							R/W	
(CC_CH2_S7)	DIGI	CC_CH2	_SZ[15:0]:	2nd orde	r tempera	ture charact	teristic zer	o order c	oefficient	LV1/	
(00_0112_02)	_AON	for the s	ensor conne	ected to C	H2.					LV3	
40h-41h	xxh	CC_CH2	_SF[15:0]							R/W	
(CC_CH2_SE)	DIGI	CC_CH2	_SF[15:0]:	2nd orde	er tempera	ture charac	cteristic 1s	st order c	oefficient	LV1/	
(00_0112_51)	_AON	for the s	ensor conne	ected to C	H2.					LV3	
42h-12h	xxh	CC_CH2	_SS[15:0]							R/W	
4211-4311 (CC CH2 SS)	DIGI	CC_CH2	_SS[15:0]:	2nd orde	r tempera	ture charac	teristic 2n	d order c	oefficient	LV1/	
(00_0/12_33)	_AON	for the s	ensor conne	ected to C	H2.					LV3	

Table 15.14 Register address map (11/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W		
11h-15h	xxh	CC_CH2	C_CH2_TZ[15:0]									
(CC_CH2_TZ)	DIGI _AON	CC_CH2_TZ[15:0] : 3rd order temperature characteristic zero order coefficient for the sensor connected to CH2.										
16h-17h	xxh	CC_CH2	CC_CH2_TF[15:0]									
46h-47h (CC CH2 TF)	DIGI	CC_CH2_TF[15:0] : 3rd order temperature characteristic 1st order coefficient for							LV1/			
(_AON	the sensor connected to CH2.								LV3		
18h-10h	xxh	CC_CH2	_TS[15:0]							R/W		
48h-49h (CC_CH2_TS)	DIGI	CC_CH2	_TS[15:0]:	3rd order	r tempera	ture charact	teristic 2n	d order c	oefficient	LV1/		
(CC_CH2_TS)	_AON	for the s	ensor conne	ected to C	H2.					LV3		

CC_SET_SHIFT (Addr. = 4Ah~56h)

	Table 15.16	Register	address	map	(13)	/25))
--	-------------	----------	---------	-----	------	------	---

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	xxh	BITSHI	-T_CH0_F[3	3:0]		BITSHIFT_	_CH0_S[3:	:0]		R/W
4Ah (CC_SET_ SHIFT_C)	DIGI _AON	BITSHIF when r connect BITSHIF when r connect	T_CH0_F[3 nultiplying ed to CH0 a T_CH0_S[3 nultiplying ed to CH0 a	3:0] : In (1st order and the AD 3:0] : In (2nd orde and the AD	correction correctio value. correction r correcti value.	calculation on coefficie calculation on coefficie	, specifies ent for te , specifies ent for te	s the shif emperatur s the shif emperatur	t amount e sensor t amount e sensor	LV1/ LV3
	xxh	BITSHI	multiplying 2nd order correction coefficient for temperature sensor iected to CH0 and the AD value. HIFT_CH0_T[3:0] BITSHIFT_CH1_ZF[3:0] HIFT_CH0_T[3:0] : In correction calculation, specifies the shift amount n multiplying 3rd order correction coefficient for temperature sensor ected to CH0 and the AD value. HIFT_CH1_ZF[3:0] : In correction calculation, specifies the shift amount n multiplying offset temperature characteristic 1st order coefficient for the or connected to CH1 and the corrected temperature AD value or specifies shift amount when multiplying 1st order correction coefficient for							
4Bh (CC_SET_ SHIFT_B)	DIGI _AON	BITSHIFT_CH0_T[3:0] : In correction calculation, specifies the shift amount when multiplying 3rd order correction coefficient for temperature sensor connected to CH0 and the AD value. BITSHIFT_CH1_ZF[3:0] : In correction calculation, specifies the shift amount when multiplying offset temperature characteristic 1st order coefficient for the sensor connected to CH1 and the corrected temperature AD value or specifies the shift amount when multiplying 1st order correction coefficient for temperature sensor connected to CH1 and the AD value.								LV1/ LV3
	xxh	BITSHIFT_CH1_ZS[3:0] BITSHIFT_CH1_FF[3:0]							R/W	
4Ch (CC_SET_ SHIFT_A)	DIGI _AON	BITSHIF when m sensor of the shi tempera BITSHIF when m the sen specifies tempera	BITSHIFT_CH1_ZS[3:0]BITSHIFT_CH1_FF[3:0]BITSHIFT_CH1_ZS[3:0] : In correction calculation, specifies the shift amount when multiplying offset temperature characteristic 2nd order coefficient for the sensor connected to CH1 and the corrected temperature AD value or specifies the shift amount when multiplying 2nd order correction coefficient for temperature sensor connected to CH1 and the AD value.BITSHIFT_CH1_FF[3:0] : In correction calculation, specifies the shift amount when multiplying 1st order temperature characteristic 1st order coefficient for the sensor connected to CH1 and the corrected temperature AD value.BITSHIFT_CH1_FF[3:0] : In correction calculation, specifies the shift amount when multiplying 1st order temperature characteristic 1st order coefficient for the sensor connected to CH1 and the corrected temperature AD value or specifies the shift amount when multiplying 3rd order correction coefficient for temperature sensor connected to CH1 and the AD value.						LV1/ LV3	

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	xxh	BITSHIF	T_CH1_FS[3:0]		BITSHIFT	CH1_F[3:	:0]		R/W
4Dh (CC_SET_ SHIFT_9)	DIGI _AON	BITSHIF when mu the sens BITSHIF when mu AD value	BITSHIFT_CH1_FS[3:0] : In correction calculation, specifies the shift amount when multiplying 1st order temperature characteristic 2nd order coefficient for the sensor connected to CH1 and the corrected temperature AD value. BITSHIFT_CH1_F[3:0] : In correction calculation, specifies the shift amount when multiplying 1st order coefficient for the sensor connected to CH1 and the AD value. BITSHIFT_CH1_SF[3:0] BITSHIFT_CH1_SF[3:0] BITSHIFT_CH1_SF[3:0]							
	xxh	BITSHIF	T_CH1_SF[3:0]		BITSHIFT	_CH1_SS[3:0]		R/W
4Eh (CC_SET_ SHIFT_8)	DIGI _AON	BITSHIF when me the sens BITSHIF when me the sens	BITSHIFT_CH1_SF[3:0] : In correction calculation, specifies the shift amount when multiplying 2nd order temperature characteristic 1st order coefficient for the sensor connected to CH1 and the corrected temperature AD value. BITSHIFT_CH1_SS[3:0] : In correction calculation, specifies the shift amount when multiplying 2nd order temperature characteristic 2nd order coefficient for the sensor connected to CH1 and the corrected temperature AD value.BITSHIFT_CH1_SS[3:0] : In correction calculation, specifies the shift amount when multiplying 2nd order temperature characteristic 2nd order coefficient for the sensor connected to CH1 and the corrected temperature AD value.BITSHIFT_CH1_S[3:0]BITSHIFT_CH1_TF[3:0]							LV1/ LV3
	xxh	BITSHIF	T_CH1_S[3	:0]		BITSHIFT	_CH1_TF[3:0]		R/W
4Fh (CC_SET_ SHIFT_7)	DIGI _AON	BITSHIFT_CH1_S[3:0] : In correction calculation, specifies the shift amount when multiplying 2nd order coefficient for the sensor connected to CH1 and the AD value. BITSHIFT_CH1_TF[3:0] : In correction calculation, specifies the shift amount when multiplying 3rd order temperature characteristic 1st order coefficient for the sensor connected to CH1 and the corrected temperature AD value.							LV1/ LV3	
	xxh	BITSHIF	T_CH1_TS[[3:0]		BITSHIFT	_CH1_T[3	:0]		R/W
50h (CC_SET_ SHIFT_6)	DIGI _AON	BITSHIFT_CH1_TS[3:0] BITSHIFT_CH1_T[3:0] BITSHIFT_CH1_TS[3:0] : In correction calculation, specifies the shift amount when multiplying 3rd order temperature characteristic 2nd order coefficient for the sensor connected to CH1 and the corrected temperature AD value. BITSHIFT_CH1_T[3:0] : In correction calculation, specifies the shift amount when multiplying 3rd order coefficient for the sensor connected to CH1 and the AD value.						LV1/ LV3		
	xxh	Reserve				BITSHIFT	_CH2_ZF[3:0]		R/W
51h (CC_SET_ SHIFT_5)	DIGI _AON	BITSHIF when mi sensor c	T_CH2_ZF[ultiplying o onnected to	3:0] : In ffset temp o CH2 and	correction perature c I the corre	n calculation haracteristic ected tempe	n, specifie : 1st orde rature AD	s the shif r coefficie value.	t amount nt for the	LV1/ LV3

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	xxh	BITSHIF	T_CH2_ZS	[3:0]		BITSHIFT	CH2_FF[3:0]		R/W
52h (CC_SET_ SHIFT_4)	DIGI _AON	BITSHIF when m sensor c the shif tempera BITSHIF when m the sense specifies tempera	when multiplying offset temperature characteristic 2nd order coefficient for the sensor connected to CH2 and the corrected temperature AD value or specifies the shift amount when multiplying 2nd order correction coefficient for temperature sensor connected to CH2 and the AD value.BITSHIFT_CH2_FF[3:0] : In correction calculation, specifies the shift amount when multiplying 1st order temperature characteristic 1st order coefficient for the sensor connected to CH2 and the corrected temperature AD value or specifies the shift amount when multiplying 3rd order correction coefficient for temperature sensor connected to CH2 and the AD value.BITSHIFT_CH2_FS[3:0]BITSHIFT_CH2_F[3:0]BITSHIFT_CH2_FS[3:0]BITSHIFT_CH2_F[3:0]							LV1/ LV3
	xxh	BITSHIF	T_CH2_FS[[3:0]		BITSHIFT	CH2_F[3	:0]		R/W
53h (CC_SET_ SHIFT_3)	DIGI _AON	BITSHIF when m the sens BITSHIF when m AD value	T_CH2_FS[ultiplying 1 or connector T_CH2_F[3 ultiplying 1: e.	[3:0] : In st order to ed to CH2 3:0] : In st order co	correctior emperatur and the c correction pefficient f	n calculation e character orrected ter calculation for the sens	n, specifie istic 2nd o nperature , specifies or connec	s the shif order coef AD value s the shif ted to CH	t amount ficient for t amount 2 and the	LV1/ LV3
	xxh	BITSHIF	T_CH2_SF[[3:0]		BITSHIFT	CH1_SS[3:0]		R/W
54h (CC_SET_ SHIFT_2)	DIGI _AON	BITSHIF when m the sens BITSHIF when m the sens	T_CH2_SF[ultiplying 2 or connector T_CH2_SS[ultiplying 2 or connector	[3:0] : In nd order t ed to CH2 [3:0] : In nd order t ed to CH2	correction temperatu and the c correction emperatu and the c	n calculation re characted orrected ter n calculation re character orrected ter	n, specifie ristic 1st (nperature n, specifie istic 2nd (nperature	s the shif order coef AD value s the shif order coef AD value	t amount ficient for t amount ficient for	LV1/ LV3
	xxh	BITSHIF	T_CH2_S[3	3:0]		BITSHIFT_	CH2_TF[3:0]		R/W
55h (CC_SET_ SHIFT_1)	DIGI _AON	BITSHIF when m AD value BITSHIF when m the sens	T_CH2_S[3 ultiplying 2 e. T_CH2_TF[ultiplying 3 or connecto	3:0] : In nd order c [3:0] : In rd order t ed to CH2	correction coefficient correction emperatu and the c	calculation for the sens calculatior re character orrected ter	, specifies or connec n, specifie ristic 1st c nperature	s the shif ted to CH s the shif order coef a AD value	t amount 2 and the t amount ficient for	LV1/ LV3

Table	15.18	Reaister	address	map ((15)	(25)
TUDIC	TO:TO	Register	addicoo	map ((エン/	23)

Table 15.19 Register address map (16/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
	xxh	BITSHI	BITSHIFT_CH2_TS [3:0] BITSHIFT_CH2_T[3:0]								
56h (CC_SET_ SHIFT_0)	DIGI _AON	BITSHIF when m the sens BITSHIF when m AD valu	T_CH2_TS oultiplying 3 sor connecto T_CH2_T [ultiplying 3 e.	[3:0]: In rd order t ed to CH2 [3:0]: In rd order c	correction emperatur and the c correction pefficient	n calculatior re character corrected ter calculation for the sens	n, specifie istic 2nd o nperature , specifies or connec	s the shif order coef AD value s the shif ted to CH	t amount ficient for t amount 2 and the	LV1/ LV3	

©2025 Mitsumi Electric Co., Ltd. All rights reserved. The contents of this document are subject to change without notice. The details listed here are not a guarantee.

MITSUMI ELECTRIC CO., LTD. Semiconductor Business div. https://product.minebeamitsumi.com/en/product/category/ics/

IO_SET (Addr. = 57h)

Table 15.20 Register address map (17/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	Reserve	3				SEL_RAW	SET_STAT	DIS_RES_WIDTH	R/W
57h (10_SET)	DIGI _AON	SEL_RA 0: Po 1: Pre Don't cl When t specifie SET_ST read co 0b: S (24-/ 1b: S (Statu omitt If sta 00b: 01b: In ad befor DIS_RE comma 0b: T Int Res Un: 1b: T	W: Speci st-correct hange thi his bit is d as 24bi AT: Spec mmand. tatus is r 16-bits m tatus is inc tatus is inc s and 2: ed.) tus is inc New data Old data dition, af e AD con S_WIDTI nd. he bit wi ernal Ter sistance l specified he bit is	ifies data tion data is bit duri set to "1 its and 2" ifies whe not includ neasurem ncluded i 2-/14-bits luded, tha that has ter powe wersion i H: Speci dth is fixe pordge se : 24bits specified	to be sto ing Active ", bit1, (s comple ther to ir led in the ent resu n the sta s measur e followi acquirec r on or re s "01b". fies the ed as foll or: 16bits nsor: 24 as 24 bi	ored in re- e. 2) "SET_S ement. aclude start e start of lt can be irt of read rement re- ng status d once eset, the s bit widt lows: bits ts.	ESULT REGISTERS TAT, DIS_RE atus in the rea read data. obtained.) d data. ESULT can be of status when y h to read d	s (Addr. = 00 S_WIDTH" is ad data during obtained. Two d in top two b rou execute re	h to 08h). ignored. The bit is g execution of result o low-order bits are bits. esult read command sion of result read	LV1/ LV3

TRIM_VOFF (Addr. = 58h~59h)

Table 15.21 Register address map (18/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W		
	xxh	TRIM_VC	RIM_VOFF1 [7:0]									
58h (TRIM_VOFF1)	DIGI _AON	TRIM_VC set value (0.4mV/V When CH	RIM_VOFF1 [7:0]: Regulates offset voltage of Channel 1 connection sensor. The set value is 2's complement and the regulation range is Typ50mV/V to +50mV/V 0.4mV/V/step).0.4mV/V/step).When CH1_GAIN [2:0] =000b or 001b, this function is disable.									
	xxh	TRIM_VC	FF2 [7:0]							R/W		
59h (TRIM_VOFF2)	DIGI _AON	TRIM_VC set value (0.4mV/V When CH	TRIM_VOFF2 [7:0]: Regulates offset voltage of Channel 2 connection sensor. The set value is 2's complement and the regulation range is Typ50mV/V to +50mV/V (0.4mV/V/step). When CH2_GAIN [2:0] =000b or 001b, this function is disable.							LV1/ LV3		

$CHx_FILT (Addr. = 5Ah \sim 5Ch)$

Table 15.22	Register	address	map	(19)	/25)	
-------------	----------	---------	-----	------	------	--

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
	00h	CH0_OSR[1:0] CH0_AVG[2:0] CH0_GAIN[2:0]							R/W		
5Ah (CHO_FILT)	DIGI _AON	This addro CH0_OSR 00b: 25 01b: 51 10b: 10 11b: 20 CH0_AVG 000b: 1 001b: 2 010b: 3 011b: 4 100b: 5 101b: 6 110b: 7 111b: 8 CH0_GAII 001b: 1 010b: 4 011b: 8 100b: 1 101b: 3 110b: 6 111b: 1	CHO_OSR [1:0]: Specifies CIC decimation ratio of CHO. 00b: 256 01b: 512 10b: 1024 11b: 2048 CHO_AVG [2:0]: Specifies the number of averaging times of CHO measurement result. 000b: 1 001b: 2, right 1 bit shift 010b: 3, right 1 bit shift 011b: 4, right 2 bit shift 100b: 5, right 2 bit shift 110b: 6, right 2 bit shift 111b: 8, right 3 bit shift CHO_GAIN [2:0]: Specifies pre-amplifier gain of CHO. 001b: 1 (go through the buffer in PGA for it TEST) 010b: 4 011b: 8 100b: 16 101b: 32 110b: 64 111b: 128								
5Bh (CH1_FILT)	00h	CH1_OSR	[1:0]	CH1_AVG	[2:0]		CH1_GAIN	[2:0]		R/W	
	DIGI _AON	Setting of CH1 filter and amplifier. For details, see register CH0_FILT.								LV1/ LV3	
	00h	CH2_OSR	[1:0]	CH2_AVG	[2:0]		CH2_GAIN	[2:0]		R/W	
5Ch (CH2_FILT)	DIGI _AON	Setting of CH2 filter and amplifier. For details, see register CH0_FILT.							LV1/ LV3		

CH_MISC_SET (Addr. = 5Dh)

Table 15.23 Register address map (20/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	10h	Reserve	DIS_DE M_PGA	SET_DI FF	CON_VR EFN	CH2_TY PE	CH1_TY PE	CH0_DI SCON	CH0_SE L_EXTE MP	R/W
5Dh (CH_MISC_ SET)	DIGI _AON	DIS_DEM SET_DIFF results as mode ope target is a SEL_RAW CON_VRE 0: Direc 1: Conn CH2_TYPE 0b: Phy 1b: Ten CH1_TYPE 0b: Phy 1b: Ten CH1_TYPE 0b: Phy 1b: Ten CH1_TYPE 0b: Phy 1b: Ten CH0_DISC during CH connected GND. 0b: Con Spec 1b: No o from CH0_SEL_ 0b: Inte 1b: Exte	PGA: For I : This IC has one result ration (0: N s follows, a = 0 during FN: VREFN tly connect ects to CO E: Specifies sical senso nperature s Sical senso nperature s CON: Specifies sical senso nperature s CON: Specifies in conversi I to CH0 is nects GND cifically, Set connection n the outsid EXTEMP: Second temper	IC test as a function (difference and only cal difference selection set to VREFN Mx termina a sensor to r (Resistan- iensor a sensor to r (Resistan- iensor files the sig on. This set single inp (Connect / to GND du (AOM term le.) Specifies a erature sense	on to output the mode op ration, 1: D lculation rese mode ope signal for Al V terminal (V termi	it a differer peration). T pifference m sult is store ration. DC For IC test cted to CH ype) cted to CH ype) cted to CH ype) dditionally ed when th "0" connect al to GND if conversion. inside IC. If e sensor to	nce between This bit spen node operated and in RES_S 2. 1. 2. 1. connected ne external cts unused nside IC). Bias voltage	to the A0M temperatu ADC minus e needs to b ted to CH0	onversion difference alculation se specify 1 terminal re sensor s input to be applied	LV1/ LV3

In the difference mode controlled by SET_DIFF of Register CH_MISC_SET, this IC operates as follows.

Outline

This function is installed to cancel the bridge change with time. A difference of the result between the two channels is stored as a result of one channel. The image of the difference mode operation is given below.

Fig. 15.3 Image of difference mode operation

Operating condition

At Normal Mode

1) SET_DIFF = High

2) Two or three bits out of EN_1ST, EN_2ND, and EN_3RD specify physical sensor (channel 1 or 2)

If all of the above conditions are not satisfied, the difference mode is not activated and the AD conversion result before calculation is stored.

At Sequential Mode

- 1) SET_DIFF = High
- 2) SET_SEQ specify physical sensor (channel 1 or 2)

If all of the above conditions are not satisfied, the difference mode is not activated and the AD conversion result before calculation is stored.

And, it is necessary to retrieve physical value in Normal Mode before measuring physical value in Sequential Mode.

Details of operation

Operation expression and its target at Normal mode are given below.

Expression: c = b - a

- Target: a = The last but one physical sensor AD conversion result of Normal mode conversion results
 - : b = The last physical sensor AD conversion result of Normal mode conversion results

In the above case, the target corresponds to any of the following:

- 1) Result of channel specified in EN_2ND Result of channel specified in EN_1ST
- 2) Result of channel specified in EN_3RD Result of channel specified in EN_1ST
- 3) Result of channel specified in EN_3RD Result of channel specified in EN_2ND (Calculation when 3 channels of EN_1ST/2ND/3RD are set to physical sensor is 3).)

Operation expression and its target at Normal mode are given below.

Expression: c = b - a

- Target: a = The last physical sensor AD conversion result of Normal mode conversion results acquired before Sequential Mode
 - : b = The physical sensor AD conversion result of Sequential Mode conversion result

In the above case, the target corresponds to any of the following:

- 1) Result of channel specified in SET_SEQ Result of channel specified in EN_1ST
- 2) Result of channel specified in SET_SEQ Result of channel specified in EN_2ND
- 3) Result of channel specified in SET_SEQ Result of channel specified in EN_3RD

By setting the register CON_VREFN, the connection state is as shown in the figure below.
TRIM1/2/3/4 (Addr. = 5Eh~61h)

Table 15.24 Register address map (21/25)

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	
	xxh	TRIM_LP	VREF[3:0]			TRIM_LPO	SC[3:0]			R/W	
5Eh (TRIM1)	DIGI _AON	TRIM_LP consump TRIM_LP consump	IM_LPVREF[3:0] TRIM_LPOSC[3:0] IIM_LPVREF [3:0]: Regulates regulator reference voltage for low power nsumption. IIM_LPOSC [3:0]: Regulates OCS oscillation frequency for low power nsumption. IIM_LPOSC [3:0]: Regulates OCS oscillation frequency for low power nsumption. IIM_LPOSC [3:0]: Regulates BGR output voltage. IIM_IREF[3:0] IIM_IREF[3:0]: Regulates reference current.						LV1/ LV3		
5Eb	xxh	Reserve	erve TRIM_BGR[5:0]								
(TRIM2)	DIGI _AON	TRIM_BO	GR [5:0]: Re	egulates B	GR output	t voltage.				LV1/ LV3	
60b	xxh	TRIM_IR	EF[3:0]			TRIM_RG[3:0]			R/W	
(TRIM3)	DIGI _AON	TRIM_IR TRIM_R	EF [3:0]: R 6 [3:0]: Reg	egulates r gulates reg	eference (Julator ou	current. tput voltage	during no	ormal ope	ration.	LV1/ LV3	
616	xxh	SPD_OS	PD OSC[1:0] TRIM OSC[5:0]								
01N (TDIMA)	DIGI	SPD_OS	C [1:0]: Rou	ugh regula	tes OSC o	scillation fre	equency.			LV1/	
(//////////////////////////////////////	_AON	TRIM_OS	SC [5:0]: Fi	nely regula	ates OSC	frequency.				LV3	

MON_SET (Addr. = 62h)

	Table 15.25	Register	address	map	(22/2)	5)
--	-------------	----------	---------	-----	--------	----

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	DIS_FILT	Reserve	SEL_GPC	D[5:0]					R/W
62h (MON_SET)	DIGI _AON	DIS_FILT: S 0: With filt 1: Without With filter, With slope SEL_GPO [5: SEL_GPO [5: 00_0100b 00_1111b 01_1000b 01_1001b 10_0010b 10_0010b Other sett DRDY (B)	spike noise control, the control, the control, the control specifie col: coutputs cle coutputs Di coutputs Di coutputs Di coutputs Di coutputs IR coutputs IR coutputs IR ings are ma is a signal n	input filter e control lope control e of up to s e rise / the s GPO terr ock for TS ain clock. RDY signa RDYB sign GR voltage EF curren de for TES otifying co	r and outp ol 50ns widtl fall time minal. TBY count I. al. e. t. ST. pmpletion	of AD co	control o removed 300ns.	f SCL/SDA t data prepar	ration.	LV1/ LV3

MISC_SET (Addr. = 63h)

Tahle	15 26	Register	address	man	(23/2)	25)
שועם ו	13.20	REGISLEI	auuress	IIIau I		201

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit0	R/W		
	00h	SET_WA SET_OD SEL_CY EN_BI TEST_A RM ET C EN_BI CT									
63h (MISC _SET)	DIGI _AON	SET_WAR terminal s Standby a SET_ODE ^T and is not detection SEL_CYC Capacity f connection ground up detection Bit[4:0] :F Please spe	M: Controls witch to tur nd Active, t T: Controls activated t operation a : Controls o to ground n detection to 600pF operation c for IC test ecify these l	cOM term ns on only the COM ter sensor com the connecti- ctivates aft f time for s up to 100p operation is assume ompletes M	inal switch. during State minal switc unection det on detection er data tran ensor conne F is assum completes ed for use ax.28.5ms.	"0" is a st to convert h on all cha cection ope n operation isfer from N ection detect ed for use Max.4.0ms in an envir	andard sett AD. When annels for A ration. "0" When "1" IVM to REG tion. "0" is in an env when "1 ronment. T	ing and set "1" is set for D conversion is a standar is set, the conversion during Boom standard so ironment. " is set, Conversion his case, conversion " is case, conversion" " i	t the COM or state of on. ard setting connection otLoad. etting and This case, apacity to connection	LV1/ LV3	

NVM_TEST1/2 (Addr. = 64h~65h)

Table 15.27	Register	address	map	(24/	/25)
-------------	----------	---------	-----	------	------

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W		
64h	00h	BULK_O DD_EN	BULK_E VEN_EN	MREAD_ EN	CCMON_ EN	OSCMO N_EN	MARGI	N_TRIM[2:0)]	R/W		
(NVM_TEST1)	DIGI	For NVM 7	EST							LV2/		
	_AON	Details are	Details are separately described.									
65h (NVM_TEST2)	00h	VTUNMO N_EN	CORE_I BIAS_O VR_EN	OSC_OV R_EN	OSC_IBI AS_MON _EN	Reserve	DIS_CP	DIS_PR OG	DIS_ERA SE	R/W		
	DIGI	For NVM T	EST							LV2/		
	_AON	Details are	e separately	described.						LV2		

ACCS_CTRL (Addr. = 66h)

Table 15.28	Register	address	map	(25)	(25))
				<u>\ /</u>	,	

Address	Initial Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W
	00h	Reserve					EN_LV3	CTL_EN _LV3	EN_LV2	R/W
66h (ACCS_CTRL)	DIGI _AON	Restricts r Setting of ① Rea ② Wr ③ Rea ② Wr ③ Rea ④ Wr ⑤ Rea ⑥ Wr In addit 05h as t	egister acce LV2 ads this add ites the data ads this add LV3 ads this add ites the data ads this add ite the data ads this add ite the data chis address	ress. (Sen a 01h. (Sen ress to cor ress. (Sen a 01h. (Sen a 01h. (Sen ress. 03h. ress. 03h. ress. 07h. etting acce data.	ds NACK af nds NACK a nfirm Data ds NACK af nds NACK a ss restrict t	ter register is well.) = 01h. (Co ter register is well.)	r address do onfirms LV2 r address do	esignation.) setting is a esignation.) p to ⓒ, you	pplied.)	Special

These are concrete communication formats to release the access restriction. Regarding ②, the slave sends NACK after the register address is designated. After that, when it receives Data = 01h, the data can be written to this IC.

① Addr.=66h Read	S Slave address W	A Register address	N P S	Slave address	R A	FF	А	CRC	NP
⊘ ^{Addr.=66h} Data=01h Write	S Slave address W	A Register address	N	01	N P				
③ Addr.=66h Read	S Slave address W	A Register address	A P S	Slave address	R A	01	А	CRC	NP
⊕ Addr.=66h Data=03h Write	S Slave address W	A Register address	A	03	AP				
⑤ Addr.=66h Read	S Slave address W	A Register address	A P S	Slave address	R A	03	А	CRC	NP
⑥ Addr.=66h Data=07h Write	S Slave address W	A Register address	A	07	AP				
	S : START condition	P : STOP condition	R :	READ (H)	W	: WRITE (L)			
	<i>Bold</i> : Slave response Thin : Control from master		N :	NACK(H)	А	: ACK(L)			

Fig. 15.6 Access restriction release

NVM (Non-volatile memory)

MV3830 contains NVM (Non-volatile memory) in order to store trimming for analog circuit and sensor correction value. This has 16bits width, so it is necessary to access by 16bits width. This NVM operates with the main regulator output voltage as the supply voltage, and the high voltage for writing is covered with the built-in charge pump, it is not necessary to apply a high voltage from the outside.

You can write about 100 times.

Must be access to NVM after setting MV3830 to state of Idle and waiting for 2ms or more.

NVM Address map

In NVM, access restriction (Read, Write) is specified.

To read from / write to NVM, setting of bit [2:0] (Addr. = 66h) is needed.

This IC has checksum function to detect incorrect data in this memory area.

Checksum result is stored in Addr. = AFh. The checksum coverage is all data except for the one stored in AFh.

The table is shown on the following page. For details of each parameter, see Register map.

				TUDIC IO	TT INVIIC						
Address	15-8/ 7-0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Read	Write
90h	15-8	Reserve			I	2C ADDR[6:0)]			LV1	LV2
0011	7-0	Reserve	Reserve	Reserve	SET_CRC	SELF_CHK	CIC_OSRALL	IIR_CO	EF[1:0]	LV1	LV2
	15-8	SET_SE	EQ[1:0]	EN_3F	RD[1:0]	EN_2N	ID[1:0]	EN_1S	T[1:0]	LV1	LV2
		Reserve		TSTBY[2:0]		Reserve		MODE[2:0]			
01h		For details, s	see Register	map. It is foll	owing that co	ontents relate	ed to operation	ons are differ	ent		
0111	7-0	from those o	described in t	he register a	ddress map.					LV1	LV2
		When	MODE [2:0] i	s set as belo	w, it will shift	to Sleep.					
			100b(Reset)、110b(Boot	tLoad)						
07h	15-8	SET_GPC	DTH[1:0]			GPOTH_D	ATA[13:8]			LV1	LV2
0211	7-0		GPOTH_DATA[7:0]							LV1	LV2
83h	15-0		CC_CH0_Z[15:0] L						LV1	LV2	
84h	15-0		CC_CH0_F[15:0]							LV1	LV2
85h	15-0		CC_CH0_S[15:0]							LV1	LV2
86h	15-0		CC_CH0_S[15:0] LV CC_CH0_T[15:0] LV						LV1	LV2	
87h	15-0				CC_CH1_	_ZZ[15:0]				LV1	LV2
88h	15-0				CC_CH1_	_ZF[15:0]				LV1	LV2
89h	15-0				CC_CH1_	_ZS[15:0]				LV1	LV2
8Ah	15-0				CC_CH1_	FZ[15:0]				LV1	LV2
8Bh	15-0				CC_CH1_	FF[15:0]				LV1	LV2
8Ch	15-0				CC_CH1_	FS[15:0]				LV1	LV2
8Dh	15-0				CC_CH1_	SZ[15:0]				LV1	LV2
8Eh	15-0				CC_CH1_	SF[15:0]				LV1	LV2
8Fh	15-0				CC_CH1_	SS[15:0]				LV1	LV2
90h	15-0				CC_CH1_	TZ[15:0]				LV1	LV2
91h	15-0				CC_CH1_	TF[15:0]				LV1	LV2
92h	15-0				CC_CH1_	TS[15:0]				LV1	LV2

Table 16.1 NVM address map (1/3)

Address	15-8/ 7-0	Init. Val	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 Bit0		Bit0	Read	Write	
93h	15-0	xxxxh				CC_CH2_	ZZ[15:0]				LV1	LV2
94h	15-0	xxxxh				CC_CH2_	ZF[15:0]				LV1	LV2
95h	15-0	xxxxh				CC_CH2_	ZS[15:0]				LV1	LV2
96h	15-0	xxxxh				CC_CH2_	FZ[15:0]				LV1	LV2
97h	15-0	xxxxh				CC_CH2_	FF[15:0]				LV1	LV2
98h	15-0	xxxxh				CC_CH2_	FS[15:0]				LV1	LV2
99h	15-0	xxxxh				CC_CH2_	SZ[15:0]				LV1	LV2
9Ah	15-0	xxxxh				CC_CH2_	SF[15:0]				LV1	LV2
9Bh	15-0	xxxxh				CC_CH2_	SS[15:0]				LV1	LV2
9Ch	15-0	xxxxh				CC_CH2_	TZ[15:0]				LV1	LV2
9Dh	15-0	xxxxh				CC_CH2_	TF[15:0]				LV1	LV2
9Eh	15-0	xxxxh				CC_CH2_	TS[15:0]				LV1	LV2
OFh	15-8	xxxxh		BITSHIFT_(CH0_F[3:0]			BITSHIFT_	CH0_S[3:0]		LV1	LV2
9FN	7-0			BITSHIFT_CH0_T[3:0] BITSHIFT CH1 ZS[3:0]				BITSHIFT_C	CH1_ZF[3:0]		LV1	LV2
A.O.b.	15-8	xxxxh		BITSHIFT_CH0_T[3:0] BITSHIFT_CH1_ZS[3:0] BITSHIFT_CH1_FS[3:0]				BITSHIFT_C	CH1_FF[3:0]		LV1	LV2
AUN	7-0			BITSHIFT_CH1_ZS[3:0] BITSHIFT_CH1_FS[3:0] BITSHIFT_CH1_SE[3:0]				BITSHIFT_(CH1_F[3:0]		LV1	LV2
A 1 h	15-8	xxxxh		BITSHIFT_CH1_FS[3:0] BITSHIFT_CH1_SF[3:0]				BITSHIFT_C	H1_SS[3:0]		LV1	LV2
AIN	7-0			BITSHIFT_(CH1_S[3:0]			LV1	LV2			
4.2h	15-8	xx0xh		BITSHIFT_C	H1_TS[3:0]			LV1	LV2			
AZN	7-0		Reserve	Reserve	Reserve	Reserve		BITSHIFT_C	CH2_ZF[3:0]		LV1	LV2
4.2h	15-8	xxxxh		BITSHIFT_C	H2_ZS[3:0]			BITSHIFT_C	CH2_FF[3:0]		LV1	LV2
ASII	7-0			BITSHIFT_C	H2_FS[3:0]			BITSHIFT_	CH2_F[3:0]		LV1	LV2
A 41-	15-8	xxxxh		BITSHIFT_C	H2_SF[3:0]			BITSHIFT_C	H2_SS[3:0]		LV1	LV2
A4n	7-0			BITSHIFT_(CH2_S[3:0]			BITSHIFT_C	H2_TF[3:0]		LV1	LV2
٨٢Ь	15-8	xx00h		BITSHIFT_C	H2_TS[3:0]			BITSHIFT_(CH2_T[3:0]		LV1	LV2
Азп	7-0		Reserve	Reserve	Reserve	Reserve	Reserve	SEL_RAW	SET_STAT	DIS_RES_WIDTH	LV1	LV2
ACh	15-8	xxxxh				TRIM_VC	FF1[7:0]				LV1	LV2
AQU	7-0					TRIM_VC	FF2[7:0]				LV1	LV2
A 71.	15-8	0000h	CH0_O	SR[1:0]	C	CH0_AVG[2:0]	C	H0_GAIN[2:0)]	LV1	LV2
A/N	7-0		CH1_O	SR[1:0]	C	CH1_AVG[2:0]	C	H1_GAIN[2:0)]	LV1	LV2
ACL	15-8	0010h	CH2_0	SR[1:0]	C	CH2_AVG[2:0]	C	H2_GAIN[2:0)]	LV1	LV2
AQU	7-0		Reserve	DIS_DEM_PGA	SET_DIFF	CON_VREFN	CH2_TYPE	CH1_TYPE	CH0_DISCON	CH0_SEL_EXTEMP	LV1	LV2

Table 16.2 NVM address map (2/3)

Address	15-8/ 7-0	Init. Val	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Read	Write
Δ9h	15-8	xxxxh	TRIM_LPVREF[3:0] TRIM_LPOSC[3:0]					LV1	LV2			
A9fi	7-0		Reserve	Reserve			TRIM_B	GR[5:0]			LV1	LV2
0.0 h	15-8	xxxxh	TRIM_IREF[3:0] TRIM_RG[3:0]				LV1	LV2				
AAN	7-0		SPD_OSC[1:0] TRIM_OSC[5:0]					LV1	LV2			
ABh		0000h	DIS_FILT	Reserve			SEL_GF	PO[5:0]				
			For details, see Register map. The value set in the register at BootLoad differs depending on						LV1	LV2		
	15-8		the setting value of bit5(SEL_GPO[5]).									
			$0b : SEL_GPO[5:0] = bit[5:0]$ are set in the register at BootLoad.									
			1b : SEL_GPO[5:0] = 00h are set in the register at BootLoad.									
	7-0		SET_WARM	SET_ODET	SEL_CYC	0	0	0	0	0	LV1	LV2
	15.0	xxxxh	Result of probe inspection						LV1	LV2		
ACh	13-0		It is stored the result of probe test.									
ACII	7-0		Result of post assembly inspection						LV1	LV2		
			It is stored the result of post assembly inspection.									
	15-8	xxxxh	Lot number					LV1	LV2			
			It is stored the lot number of wafer.									
ADI	7-0	7-0	Wafer number					LV1 L	11/2			
			It is stored the wafer number.						LVZ			
AEh	15-8	15 9 xxxxh	CHIP_X[7:0]						-			
			It is stored the X coordinate of wafer. It is the 100 minuse value from the prober coordinate.									
	7-0	D	CHIP_Y[7:0]									
			It is stored the Y coordinate of wafer.						_			
AFh	15-0	15 0 xxxxh	CRC16CCITT[15:0]									
			It is stored c	hecksum.] -	-

Table 16.3 NVM address map (3/3)

Method to calculate CRC check sum value

To detect incorrect data written in the NVM, MV3830 has a region to write a CRC check sum value. Specifications for CRC check sum are given below.

Item	Description
Check target	NVM data(Addr.=80h~AEh)
Name	CRC16-CCITT
Polynomial	$x^{16} + x^{12} + x^5 + 1$
Initial value	16'hFFFF
Shift	Left shift
Output inversion	no

Table 16.4 Specifications for NVM data CRC check sum

A logical product of an operation result and an initial value is calculated. To shift bits to the left, the LSB of the operation result is calculated from the input data and the entire operation result is left-shifted. If the MSB is 1 at the shift, generator polynomial is added for each bit (XOR of the operation result and the generator polynomial is calculated). This is repeated as many times as the number of input bits. The calculation result when it is completed is the CRC value.

Fig. 16.1 CRC calculation

No. R24-SQFN24C-0002

MARKING CONTENTS

Model name	Model No.			
MV2820ADDEC2	(1)	(2)	(3)	(4)
IM V D O D U A R R E G Z	3	8	3	0

- 1. The 1st (5) and 2nd (6) digit shows the last 2 digit of a production year (western calendar).
- 2. The 3rd (7) and 4th (8) digit show a production week of mass production.
- 3. The 5th (9) digit show a wafer lot.

[How to indicate a production year]

The 1st digit (5)				
the last				
digit of a	mark			
production				
year				
xx1x	1			
xx2x	2			
xx3x	3			
xx4x	4			
xx5x	5			
ххбх	6			
xx7x	7			
xx8x	8			
xx9x	9			
xx0x	0			

The 2nd digit (6)				
the last digit	mark			
of a				
production				
year				
xxx1	1			
xxx2	2			
xxx3	3			
xxx4	4			
xxx5	5			
хххб	6			
xxx7	7			
xxx8	8			
xxx9	9			
xxx0	0			

The 3rd and 4th digit (7)(8)						
production week	mark	production week	mark			
1	01	27	27			
2	02	28	28			
3	03	29	29			
4	04	30	30			
5	05	31	31			
6	06	32	32			
7	07	33	33			
8	08	34	34			
9	09	35	35			
10	10	36	36			
11	11	37	37			
12	12	38	38			
13	13	39	39			
14	14	40	40			
15	15	41	41			
16	16	42	42			
17	17	43	43			
18	18	44	44			
19	19	45	45			
20	20	46	46			
21	21	47	47			
22	22	48	48			
23	23	49	49			
24	24	50	50			
25	25	51	51			
26	26	52	52			
		53	53			

©2025 Mitsumi Electric Co., Ltd. All rights reserved. The contents of this document are subject to change without notice. The details listed here are not a guarantee.

MITSUMI ELECTRIC CO., LTD. Semiconductor Business div. https://product.minebeamitsumi.com/en/product/category/ics/

NOTES

Safety Precautions

- Though Mitsumi Electric Co., Ltd. (hereinafter referred to as "Mitsumi") works continually to improve our product's quality and reliability, semiconductor products may generally malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of this product could cause loss of human life, bodily injury, or damage to property, including data loss or corruption. Before customers use this product, create designs including this product, or incorporate this product into their own applications, customers must also refer to and comply with (a) the latest versions or all of our relevant information, including without limitation, product specifications, data sheets and application notes for this product and (b) the user's manual, handling instructions or all relevant information for any products which is to be used, or combined with this products. Customers are solely responsible for all aspects of their own product design or applications; (b) evaluating and determining the appropriateness of the use of this product in this document, or in charts, diagrams, programs, algorithms, sample applications. Mitsumi assumes no liability for customers' product design or applications.
- This product is intended for applying to computers, OA units, communication units, instrumentation units, machine tools, industrial robots, AV units, household electrical appliances, and other general electronic units.
- This product is not designed as a component of equipment or devices that require a high degree of reliability, may affect the life or body, or could damage the property (space systems, submarine repeaters, nuclear power controllers, infrastructure controllers, medical equipment, military devices, units related to the control and safety of transport equipment (automobiles, trains, aircraft, etc.), traffic signaling equipment, disaster / crime prevention units, or the like). In the case where this product is used in these applications, Mitsumi does not bear any responsibility. If the product is used as a component of the above equipment or devices, Mitsumi shall not be liable for any damage caused thereby. It is the customer's responsibility to carry out the necessary safety design for the customer's hardware, software and systems.
- Before using this product, even when it is not used for the applications written previous paragraph, notify and present us beforehand if special care and attention are needed for its application, intended purpose, environment of usage, risk, and the design or inspection specification corresponding to them.
- If any damage to our customer is objectively identified to be caused by the defect of this product, Mitsumi is responsible for it. In this case, Mitsumi is liable for the cost limited to the delivery price of this product.

Application considerations during actual circuit design

- The outline of parameters described herein has been chosen as an explanation of the standard parameters and performance of the product. When you actually plan to use the product, please ensure that the outside conditions are reflected in the actual circuit and assembling designs.
- Before using this product, please evaluate and confirm the actual application with this product mounted and embedded.
- To investigate the influence by applied transient load or external noise, It is necessary to evaluate and confirm them with mounting this product to the actual application.
- Any usage above the maximum rating may destroy this product or shorten the lifetime. Be sure to use this product under the maximum rating.
- If you continue to use this product highly-loaded (applying high temperature, large current or high voltage; or variation
 of temperature) even under the absolute maximum rating and even in the operating range, the reliability of this product
 may decrease significantly. Please design appropriate reliability in consideration of power dissipation and voltage
 corresponding to the temperature and designed lifetime after confirming our individual reliability documents (such as
 reliability test report or estimated failure rate). It is recommended that, before using this product, you appropriately derate
 the maximum power dissipation (typically, 80% or less of the maximum value) considering parameters including ambient
 temperature, input voltage, and output current.

Precautions for Foreign Exchange and Foreign Trade Control Act

• If you export or take products and technologies in this document which are subject to security trade control based on the Foreign Exchange and Foreign Trade Act to overseas from Japan, permission of the Japanese government is required.

Prohibitions for Industrial Property Rights

- Since this document contains the contents related to our copyright and know-how, you are requested not to use this document for any purpose other than the application of this product.
- If a use of this product causes a dispute related to the industrial property rights of a third party, Mitsumi has no liability for any disputes except those which arise directly from the manufacturing and manufacturing method of our products.

Precautions for Product Liability Act

• Mitsumi does not bear any responsibility for any consequence resulting from any wrong or improper use of this product and other factors.

Others

- · Any part of the contents contained herein must not be reprinted or reproduced without our prior permission.
- In case of any question arises out of the description in this specification, it shall be settled by the consultation between both parties promptly.

ATTENTION

• This product is designed and manufactured with the intention of normal use in general electronics. No special circumstance as described below is considered for the use of it when it is designed. With this reason, any use and storage under the circumstances below may affect the performance of this product. Prior confirmation of performance and reliability is requested to customers.

Environment with strong static electricity or electromagnetic wave

- Environment with high temperature or high humidity where dew condensation may occur
- This product is not designed to withstand radioactivity, and must avoid using in a radioactive environment.

MITSUMI ELECTRIC CO., LTD.

Strategy Engineering Department Semiconductor Business Division

Tel: +81-46-230-3470 / https://product.minebeamitsumi.com/en/contact/

Notes:

Any products mentioned this datasheet are subject to any modification in their appearance and others for improvements without prior notification. The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 MITSUMI ELECTRIC CO., LTD. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. MITSUMI ELECTRIC CO., LTD. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. MITSUMI ELECTRIC CO., LTD. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. MITSUMI ELECTRIC CO., LTD. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by MITSUMI ELECTRIC CO., LTD. Do not apply the products to the above listed devices and equipment.

MITSUMI ELECTRIC CO., LTD. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.

9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of MITSUMI ELECTRIC CO., LTD. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to MITSUMI ELECTRIC CO., LTD. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of MITSUMI ELECTRIC CO., LTD.
- 14. For more details on the information described herein or any other questions, please contact MITSUMI ELECTRIC CO., LTD.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.